当前位置:首页 > 其他书籍
FUNDAMENTALS OF HEAT AND MASS TRANSFER
FUNDAMENTALS OF HEAT AND MASS TRANSFER

FUNDAMENTALS OF HEAT AND MASS TRANSFERPDF电子书下载

其他书籍

  • 电子书积分:25 积分如何计算积分?
  • 作 者:FRANK P.INCROPERA DAVID P.DEWITT
  • 出 版 社:JOHN WILEY & SONS
  • 出版年份:2222
  • ISBN:
  • 页数:970 页
图书介绍:
《FUNDAMENTALS OF HEAT AND MASS TRANSFER》目录
标签:

Chapter 1 INTRODUCTION 1

1.1 What and How? 2

1.2 Physical Origins and Rate Equations 3

1.2.1 Conduction 3

1.2.2 Convection 6

1.2.3 Radiation 9

1.2.4 Relationship to Thermodynamics 13

1.3 The Conservation of Energy Requirement 13

1.3.1 Conservation of Energy for a Control Volume 14

1.3.2 The Surface Energy Balance 19

1.3.3 Application of the Conservation Laws:Methodology 21

1.4 Analysis of Heat Transfer Problems:Methodology 22

1.5 Relevance of Heat Transfer 23

1.6 Units and Dimensions 24

1.7 Summary 27

Problems 29

Chapter 2 INTRODUCTION TO CONDUCTION 43

2.1 The Conduction Rate Equation 44

2.2 The Thermal Properties of Matter 46

2.2.1 Thermal Conductivity 47

2.2.2 Other Relevant Properties 51

2.3 The Heat Diffusion Equation 53

2.4 Boundary and Initial Conditions 62

2.5 Summary 65

References 66

Problems 66

Chapter 3 ONE-DIMENSIONAL,STEADY-STATE CONDUCTION 79

3.1 The Plane Wall 80

3.1.1 Temperature Distribution 80

3.1.2 Thermal Resistance 82

3.1.3 The Composite Wall 84

3.1.4 Contact Resistance 86

3.2 An Alternative Conduction Analysis 92

3.3 Radial Systems 96

3.3.1 The Cylinder 97

3.3.2 The Sphere 103

3.4 Summary of One-Dimensional Conduction Results 107

3.5 Conduction with Thermal Energy Generation 108

3.5.1 The Plane Wall 108

3.5.2 Radial Systems 114

3.5.3 Application of Resistance Concepts 119

3.6 Heat Transfer from Extended Surfaces 119

3.6.1 A General Conduction Analysis 122

3.6.2 Fins of Uniform Cross-Sectional Area 123

3.6.3 Fin Performance 130

3.6.4 Overall Surface Efficiency 134

3.6.5 Fin Contact Resistance 138

3.7 Summary 141

References 142

Problems 142

Chapter 4 TWO-DIMENSIONAL,STEADY-STATE CONDUCTION 171

4.1 Alternative Approaches 172

4.2 The Method of Separation of Variables 173

4.3 The Graphical Method 177

4.3.1 Methodology of Constructing a Flux Plot 178

4.3.2 Determination of the Heat Transfer Rate 179

4.3.3 The Conduction Shape Factor 180

4.4 Finite-Difference Equations 184

4.4.1 The Nodal Network 185

4.4.2 Finite-Difference Form of the Heat Equation 185

4.4.3 The Energy Balance Method 187

4.5 Finite-Difference Solutions 194

4.5.1 The Matrix Inversion Method 194

4.5.2 Gauss-Seidel Iteration 200

4.5.3 Some Precautions 203

4.6 Summary 203

References 204

Problems 204

Chapter 5 TRANSIENT CONDUCTION 225

5.1 The Lumped Capacitance Method 226

5.2 Validity of the Lumped Capacitance Method 229

5.3 General Lumped Capacitance Analysis 234

5.4 Spatial Effects 237

5.5 The Plane Wall with Convection 239

5.5.1 Exact Solution 239

5.5.2 Approximate Solution 240

5.5.3 Total Energy Transfer 240

5.5.4 Graphical Representations 242

5.6 Radial Systems with Convection 245

5.6.1 Exact Solutions 245

5.6.2 Approximate Solutions 246

5.6.3 Total Energy Transfer 247

5.6.4 Graphical Representation 249

5.7 The Semi-infinite Solid 259

5.8 Multidimensional Effects 263

5.9 Finite-Difference Methods 270

5.9.1 Discretization of the Heat Equation:The Explicit Method 271

5.9.2 Discretization of the Heat Equation:The Implicit Method 279

5.10 Summary 287

References 287

Problems 288

Chapter 6 INTRODUCTION TO CONVECTION 312

6.1 The Convection Transfer Problem 312

6.2 The Convection Boundary Layers 318

6.2.1 The Velocity Boundary Layer 318

6.2.2 The Thermal Boundary Layer 319

6.2.3 The Concentration Boundary Layer 320

6.2.4 Significance of the Boundary Layers 323

6.3 Laminar and Turbulent Flow 324

6.4 The Convection Transfer Equations 326

6.4.1 The Velocity Boundary Layer 326

6.4.2 The Thermal Boundary Layer 331

6.4.3 The Concentration Boundary Layer 335

6.5 Approximations and Special Conditions 341

6.6 Boundary Layer Similarity:The Normalized Convection Transfer Equations 343

6.6.1 Boundary Layer Similarity Parameters 344

6.6.2 Functional Form of the Solutions 346

6.7 Physical Significance of the Dimensionless Parameters 351

6.8 Boundary Layer Analogies 355

6.8.1 The Heat and Mass Transfer Analogy 355

6.8.2 Evaporative Cooling 359

6.8.3 The Reynolds Analogy 363

6.9 The Effects of Turbulence 364

6.10 The Convection Coefficients 367

6.11 Summary 368

References 368

Problems 369

Chapter 7 EXTERNAL FLOW 385

7.1 The Empirical Method 387

7.2 The Flat Plate in Parallel Flow 389

7.2.1 Laminar Flow:A Similarity Solution 389

7.2.2 Turbulent Flow 396

7.2.3 Mixed Boundary Layer Conditions 397

7.2.4 Special Cases 399

7.3 Methodology for a Convection Calculation 401

7.4 The Cylinder in Cross Flow 408

7.4.1 Flow Considerations 408

7.4.2 Convection Heat and Mass Transfer 411

7.5 The Sphere 417

7.6 Flow Across Banks of Tubes 420

7.7 Impinging Jets 431

7.7.1 Hydrodynamic and Geometric Considerations 431

7.7.2 Convection Heat and Mass Transfer 433

7.8 Packed Beds 438

7.9 Summary 440

References 441

Problems 442

Chapter 8 INTERNAL FLOW 467

8.1 Hydrodynamic Considerations 468

8.1.1 Flow Conditions 468

8.1.2 The Mean Velocity 469

8.1.3 Velocity Profile in the Fully Developed Region 470

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 472

8.2 Thermal Considerations 474

8.2.1 The Mean Temperature 475

8.2.2 Newton’s Law of Cooling 476

8.2.3 Fully Developed Conditions 476

8.3 The Energy Balance 480

8.3.1 General Considerations 480

8.3.2 Constant Surface Heat Flux 482

8.3.3 Constant Surface Temperature 485

8.4 Laminar Flow in Circular Tubes:Thermal Analysis and Convection Correlations 489

8.4.1 The Fully Developed Region 489

8.4.2 The Entry Region 494

8.5 Convection Correlations:Turbulent Flow in Circular Tubes 495

8.6 Convection Correlations:Noncircular Tubes 501

8.7 The Concentric Tube Annulus 502

8.8 Heat Transfer Enhancement 504

8.9 Convection Mass Transfer 505

8.10 Summary 507

References 509

Problems 510

Chapter 9 FREE CONVECTION 529

9.1 Physical Considerations 530

9.2 The Governing Equations 533

9.3 Similarity Considerations 535

9.4 Laminar Free Convection on a Vertical Surface 536

9.5 The Effects of Turbulence 539

9.6 Empirical Correlations:External Free Convection Flows 541

9.6.1 The Vertical Plate 542

9.6.2 Inclined and Horizontal Plates 546

9.6.3 The Long Horizontal Cylinder 550

9.6.4 Spheres 553

9.7 Free Convection within Parallel Plate Channels 555

9.7.1 Vertical Channels 555

9.7.2 Inclined Channels 558

9.8 Empirical Correlations:Enclosures 558

9.8.1 Rectangular Cavities 559

9.8.2 Concentric Cylinders 562

9.8.3 Concentric Spheres 563

9.9 Combined Free and Forced Convection 566

9.10 Convection Mass Transfer 567

9.11 Summary 567

References 568

Problems 570

Chapter 10 BOILING AND CONDENSATION 587

10.1 Dimensionless Parameters in Boiling and Condensation 588

10.2 Boiling Modes 589

10.3 Pool Boiling 590

10.3.1 The Boiling Curve 590

10.3.2 Modes of Pool Boiling 592

10.4 Pool Boiling Correlations 596

10.4.1 Nucleate Pool Boiling 596

10.4.2 Critical Heat Flux for Nucleate Pool Boiling 597

10.4.3 Minimum Heat Flux 598

10.4.4 Film Pool Boiling 599

10.4.5 Parametric Effects on Pool Boiling 600

10.5 Forced-Convection Boiling 606

10.5.1 External Forced-Convection Boiling 606

10.5.2 Two-Phase Flow 607

10.6 Condensation:Physical Mechanisms 608

10.7 Laminar Film Condensation on a Vertical Plate 610

10.8 Turbulent Film Condensation 615

10.9 Film Condensation on Radial Systems 619

10.10 Film Condensation in Horizontal Tubes 622

10.11 Dropwise Condensation 623

10.12 Summary 624

References 624

Problems 627

Chapter 11 HEAT EXCHANGERS 639

11.1 Heat Exchanger Types 640

11.2 The Overall Heat Transfer Coefficient 642

11.3 Heat Exchanger Analysis:Use of the Log Mean Temperature Difference 645

11.3.1 The Parallel-Flow Heat Exchanger 646

11.3.2 The Counterflow Heat Exchanger 649

11.3.3 Special Operating Conditions 650

11.3.4 Multipass and Cross-Flow Heat Exchangers 650

11.4 Heat Exchanger Analysis:The Effectiveness-NTU Method 658

11.4.1 Definitions 658

11.4.2 Effectiveness-NTU Relations 660

11.5 Methodology of a Heat Exchanger Calculation 666

11.6 Compact Heat Exchangers 672

11.7 Summary 678

References 679

Problems 680

Chapter 12 RADIATION:PROCESSES AND PROPERTIES 695

12.1 Fundamental Concepts 696

12.2 Radiation Intensity 699

12.2.1 Definitions 699

12.2.2 Relation to Emission 702

12.2.3 Relation to Irradiation 706

12.2.4 Relation to Radiosity 708

12.3 Blackbody Radiation 709

12.3.1 The Planck Distribution 710

12.3.2 Wien’s Displacement Law 712

12.3.3 The Stefan-Boltzmann Law 712

12.3.4 Band Emission 713

12.4 Surface Emission 719

12.5 Surface Absorption,Reflection,and Transmission 729

12.5.1 Absorptivity 731

12.5.2 Reflectivity 732

12.5.3 Transmissivity 734

12.5.4 Special Considerations 734

12.6 Kirchhoff’s Law 740

12.7 The Gray Surface 742

12.8 Environmental Radiation 749

12.9 Summary 756

References 758

Problems 759

Chapter 13 RADIATION EXCHANGE BETWEEN SURFACES 791

13.1 The View Factor 792

13.1.1 The View Factor Integral 792

13.1.2 View Factor Relations 794

13.2 Blackbody Radiation Exchange 803

13.3 Radiation Exchange Between Diffuse,Gray Surfaces in an Enclosure 806

13.3.1 Net Radiation Exchange at a Surface 806

13.3.2 Radiation Exchange Between Surfaces 808

13.3.3 The Two-Surface Enclosure 814

13.3.4 Radiation Shields 816

13.3.5 The Reradiating Surface 819

13.4 Multimode Heat Transfer 824

13.5 Additional Effects 827

13.5.1 Volumetric Absorption 828

13.5.2 Gaseous Emission and Absorption 829

13.6 Summary 833

References 833

Problems 834

Chapter 14 DIFFUSION MASS TRANSFER 871

14.1 Physical Origins and Rate Equations 872

14.1.1 Physical Origins 872

14.1.2 Mixture Composition 873

14.1.3 Fick’s Law of Diffusion 875

14.1.4 Restrictive Conditions 875

14.1.5 Mass Diffusion Coefficient 880

14.2 Conservation of Species 880

14.2.1 Conservation of Species for a Control Volume 881

14.2.2 The Mass Diffusion Equation 881

14.3 Boundary and Initial Conditions 884

14.4 Mass Diffusion Without Homogeneous Chemical Reactions 888

14.4.1 Stationary Media with Specified Surface Concentrations 889

14.4.2 Stationary Media with Catalytic Surface Reactions 893

14.4.3 Equimolar Counterdiffusion 896

14.4.4 Evaporation in a Column 900

14.5 Mass Diffusion with Homogeneous Chemical Reactions 902

14.6 Transient Diffusion 906

References 910

Problems 911

Appendix A THERMOPHYSICAL PROPERTIES OF MATTER 921

Appendix B MATHEMATICAL RELATIONS AND FUNCTIONS 953

Appendix C AN INTEGRAL LAMINAR BOUNDARY LAYER SOLUTION FOR PARALLEL FLOW OVER A FLAT PLATE 959

Index 965

返回顶部