1.Introduction 1
1.1 Fundamental Forces 1
1.1.1 The Gravitational Force 2
1.1.2 The Weak Nuclear Force 2
1.1.3 The Electromagnetic Force 3
1.1.4 The Strong Nuclear Force 4
1.2 Relative Strength of Four Fundamental Forces 4
1.3 Range of the Three Basic Forces 5
1.4 Classification of Matter 7
1.5 Strong Color Charges 9
1.6 Fundamental Role of“Charges” in the Unification of Forces 10
1.7 Strong Quark-Quark Force 16
1.8 Grand Unification 18
1.9 Units and Notation 19
1.10 Problems 21
1.11 References 21
2.Scattering and Particle Interaction 23
2.1 Introduction 23
2.2 Kinematics of a Scattering Process 26
2.3 Interaction Picture 31
2.4 Scattering Matrix(S-Matrix) 32
2.5 Phase Space 36
2.6 Examples 39
2.6.1 Two-body Scattering 39
2.6.2 Three-body Decay 41
2.7 Electromagnetic Interaction 50
2.8 Weak Interaction 52
2.9 Hadronic Cross-section 55
2.10 Problems 56
2.11 References 58
3.Space-Time Symmetries 59
3.1 Introduction 59
3.1.1 Rotation and SO(3) Group 60
3.1.2 Translation 62
3.1.3 Lorentz Group 63
3.2 Invariance Principle 65
3.2.1 U Continuous 65
3.2.2 U is Discrete(e.g.Space Reflection) 66
3.3 Parity 66
3.4 Intrinsic Parity 68
3.4.1 Intrinsic Parity of Pion 70
3.5 Parity Constraints on S-Matrix for Hadronic Reactions 71
3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles 71
3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity 72
3.6 Time Reversal 73
3.6.1 Unitarity 74
3.6.2 Reciprocity Relation 75
3.7 Applications 76
3.7.1 Detailed Balance Principle 76
3.8 Unitarity Constraints 77
3.8.1 Two-Particle Partial Wave Unitarity 79
3.9 Problems 85
3.10 References 90
4.Internal Symmetries 91
4.1 Selection Rules and Globally Conserved Quantum Numbers 91
4.2 Isospin 97
4.2.1 Electromagnetic Interaction and Isospin 100
4.2.2 Weak Interaction and Isospin 101
4.3 Resonance Production 101
4.3.1 △-resonance 103
4.3.2 Spin of △ 103
4.4 Charge Conjugation 107
4.5 G-Parity 112
4.6 Problems 113
4.7 References 117
5.Unitary Groups and SU(3) 119
5.1 Unitary Groups and SU(3) 119
5.2 Particle Representations in Flavor SU(3) 124
5.2.1 Mesons 126
5.2.2 Baryons 128
5.3 U-Spin 132
5.4 Irreducible Representations of SU(3) 134
5.4.1 Young's Tableaux 135
5.5 SU(N) 141
5.6 Applications of Flavor SU(3) 145
5.6.1 SU(3) Invariant BBP Couplings 145
5.6.2 VPP Coupling 146
5.7 Mass Splitting in Flavor SU(3) 148
5.8 Problems 154
5.9 References 158
6.SU(6) and Quark Model 159
6.1 SU(6) 159
6.1.1 SU(6) Wave Function for Mesons 160
6.2 Magnetic Moments of Baryons 164
6.3 Radiative Decays of Vector Mesons 170
6.4 Radiative Decays(Complementary Derivation) 176
6.4.1 Mesonic Radiative Decays V=P+γ 176
6.4.2 Baryonic Radiative Decay 177
6.5 Problems 179
6.6 References 180
7.Color,Gauge Principle and Quantum Chromodynamics 181
7.1 Evidence for Color 181
7.2 Gauge Principle 184
7.2.1 Aharanov and Bohm Experiment 186
7.2.2 Gauge Principle for Relativistic Quantum Mechanics 188
7.3 Non-Abelion Local Gauge Transformations(Yang-Mills) 190
7.4 Quantum Chromodynamics(QCD) 194
7.4.1 Conserved Current 197
7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD 199
7.5 Hadron Spectroscopy 202
7.5.1 One Gluon Exchange Potential 202
7.5.2 Long Range QCD Motivated Potential 205
7.5.3 Spin-Spin Interaction 209
7.6 The Mass Spectrum 209
7.6.1 Meson Mass Relations 211
7.6.2 Baryon Mass Spectrum 213
7.7 Problems 217
7.8 References 219
8.Heavy Flavors 221
8.1 Discovery of Charm 221
8.1.1 Isospin 223
8.1.2 SU(3) Classification 223
8.2 Charm 224
8.2.1 Heavy Mesons 224
8.2.2 The Fifth Quark Flavor:Bottom Mesons 228
8.2.3 The Sixth Quark Flavor:The Top 228
8.3 Strong and Radiative Decays of D* Mesons 229
8.4 Heavy Baryons 232
8.5 Quarkonium 233
8.6 Leptonic Decay Width of Quarkonium 237
8.7 Hadronic Decay Width 238
8.8 Non-Relativistic Treatment of Quarkonium 240
8.9 Cbservations 245
8.10 Tetraquark 246
8.11 Problems 249
8.12 References 254
9.Heavy Quark Effective Theory 255
9.1 Effective Lagrangian 255
9.2 Spin Symmetry of Heavy Quark 259
9.3 Mass Spectroscopy for Hadrons with One Heavy Quark 264
9.4 The P-wave Heavy Mesons:Mass Spectroscopy 269
9.5 Decays of P-wave Mesons 275
9.6 Problems 277
9.7 References 277
10.Weak Interaction 279
10.1 V-A Interaction 279
10.1.1 Helicity of the Neutrino 281
10.2 Classification of Weak Processes 281
10.2.1 Purely Leptonic Processes 281
10.2.2 Semileptonic Processes 283
10.2.3 Non-Leptonic Processes 287
10.2.4 μ-Decay 288
10.2.5 Remarks 289
10.2.6 Semi-Leptonic Processes 291
10.3 Baryon Decays 292
10.4 Pseudoscalar Meson Decays 296
10.4.1 Pion Decay 296
10.4.2 Strangeness Changing Semi-Leptonic Decays 297
10.5 Hadronic Weak Decays 299
10.5.1 Non-Leptonic Decays of Hyperons 299
10.5.2 △I=1/2 Rule for Hyperon Decays 302
10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model 304
10.6 Problems 307
10.7 References 310
11.Properties of Weak Hadronic Currents and Chiral Symmetry 311
11.1 Introduction 311
11.2 Conserved Vector Current Hypothesis(CVC) 311
11.3 Partially Conserved Axial Vector Current Hypothesis(PCAC) 314
11.4 Current Algebra and Chiral Symmetry 317
11.4.1 Explicit Breaking of Chiral Symmetry 320
11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons 323
11.5 Axial Anomaly 325
11.6 QCD Sum Rules 327
11.7 Problens 328
11.8 References 329
12.Neutrino 331
12.1 Introduction 331
12.2 Intrinsic Properties of Neutrinos 332
12.3 Mass 332
12.3.1 Constraints on Neutrino Mass 333
12.3.2 Dirac and Majorana Masses 337
12.3.3 Fermion Masses in the Standard Model(SM) and See-saw Mechanism 339
12.4 Neutrino Oscillations 343
12.4.1 Mikheyev-Smirnov-Wolfenstein Effect 345
12.4.2 Evolution of Flavor Eigenstates in Matter 349
12.5 Evidence for Neutrino Oscillations 351
12.5.1 Disappearance Experiments 351
12.5.2 Appearance Experiments 351
12.6 Neutrino Mass Models and Mixing Matrix and Symmetries 355
12.7 Neutrino Magnetic Moment 360
12.8 Problems 362
12.9 References 363
13.Electroweak Unification 365
13.1 Introduction 365
13.2 Spontaneous Symmetry Breaking and Higgs Mechanism 366
13.2.1 Higgs Mechanism 368
13.2.2 Gauge Symmetry Breaking for Chiral U1?U2 Group 369
13.3 Renormalizability 372
13.4 Electroweak Unification 374
13.4.1 Experimental Consequences of the Electroweak Unification 381
13.4.2 Need for Radiative Corrections 382
13.4.3 Experiments which Determine sin2θW 387
13.5 Decay Widths of W and Z Bosons 389
13.6 Tests of Yang-Mills Character of Gauge Bosons 395
13.7 Higgs Boson Mass 399
13.8 Upper Bound 399
13.8.1 Unitarity 399
13.8.2 Finiteness of Couplings 400
13.9 Standard Model,Higgs Boson Searches,Production at De-cays 401
13.9.1 LEP-2 401
13.9.2 LHC and Tevatron 402
13.10 Two Higgs Doublet Model(2HDM) 406
13.11 GIM Mechanism 411
13.12 Cabibbo-Kobayashi-Maskawa Matrix 414
13.13 Axial Anomaly 416
13.14 Problems 421
13.15 References 423
14.Deep Inelastic Scattering 425
14.1 Introduction 425
14.2 Deep-Inelastic Lepton-Nucleon Scattering 427
14.3 Parton Model 431
14.4 Deep Inelastic Neutrino-Nucleon Scattering 436
14.5 Sum Rules 439
14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents 446
14.7 Problems 447
14.8 References 450
15.Weak Decays of Heavy Flavors 451
15.1 Leptonic Decays of τ Lepton 451
15.2 Semi-Hadronic Decays of τ Lepton 453
15.2.1 Special Cases 454
15.3 Weak Decays of Heavy Flavors 457
15.3.1 Leptonic Decays of D and B Mesons 458
15.3.2 Semileptonic Decays of D and B Mesons 459
15.3.3 (Exclusive)Semileptonic Decays of D and B Mesons 464
15.3.4 Weak Hadronic Decays of B Mesons 471
15.3.5 Inclusive Hadronic B Decays 476
15.3.6 Radiative Decays of Bq Mesons 478
15.4 Inclusive Hadronic Decays of D-Mesons 479
15.4.1 Scattering and Annihilation Diagrams 480
15.5 Problems 484
15.6 References 487
16.Particle Mixing and CP-Violation 489
16.1 Introduction 489
16.2 CPT and CP Invariance 492
16.3 CP-Violation in the Standard Model 494
16.4 Particle Mixing 497
16.5 K0-?0 Complex and CP-Violation in K-Decay 504
16.6 B0-?0 Complex 511
16.7 CP-Violation in B-Decays 515
16.8 CP-Violation in Hadronic Weak Decays of Baryons 518
16.9 Problems 522
16.10 References 523
17.Grand Unification,Supersymmetry and Strings 525
17.1 Grand Unification 525
17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale 529
17.1.2 General Consequences of GUTS 531
17.2 PoincaréGroup and Supersymmetry 534
17.2.1 Introduction 534
17.2.2 Poincaré Group 537
17.2.3 Two-Component Weyl Spinors 539
17.2.4 Spinor Algebra,Supersymmetry 540
17.2.5 Supersymmetric Multiplets 542
17.3 Supersymmetry and Strings 544
17.3.1 Introduction 544
17.3.2 Supersymmetry 545
17.4 String Theory and Duality 548
17.4.1 M-theory 550
17.5 Some Important Results 552
17.6 Conclusions 552
17.7 Problems 552
17.8 References 554
18.Cosmology and Astroparticle Physics 557
18.1 Cosmological Principle and Expansion of the Universe 557
18.2 The Standard Model of Cosmology 559
18.3 Cosmological Parameters and the Standard Model Solutions 562
18.4 Accelerating Universe and Dark Energy 566
18.4.1 Evidence from Supernovae 567
18.4.2 Evidence from CMB Data 568
18.4.3 Quintessence 571
18.4.4 Modified Gravity 573
18.5 Hot Big Bang:Thermal History ofthe Universe 574
18.5.1 Thermal Equilibrium 574
18.5.2 The Radiation Era 576
18.6 Freeze Out 581
18.7 Limit on Neutrino Mass 584
18.8 Primordial Nucleosynthesis 585
18.9 Infation 588
18.9.1 Horizon Problem 588
18.9.2 Flatness Problem 590
18.9.3 Realization of Inflation 591
18.9.4 Slow-roll Inflation 593
18.10 Baryogenesis 595
18.10.1 Sakharov's Conditions 597
18.10.2 Various Scenarios for Baryogenesis 598
18.10.3 Leptogenesis 601
18.11 Problems 606
18.12 References 607
Appendix A Quantum Field Theory 609
A.1 Spin 0 Field 609
A.2 Spin 1/2 Particle 611
A.2.1 Pauli Representation of γ Matrices 612
A.2.2 Weyl Representation of γ Matrices 613
A.3 Trace of γ Matrices 616
A.4 Spin 1 Field 618
A.5 Massive Spin 1 Particle 619
A.6 Feynman Rules for S-Matrix in Momentum Space 620
A.7 Application of Feynman Rules 621
A.7.1 e+e-→Hadrons 624
A.7.2 Electron Scattering and Structureless Spin 1/2 Target 625
A.8 Discrete Symmetries 628
A.8.1 Charge Conjugation 628
A.8.2 Space Reflection 631
A.8.3 Time Reversal 632
A.9 Problems 633
Appendix B Renormalization Group and Running Coupling Constant 639
B.1 Feynman Rules for Quantum Chromodynamics 639
B.2 Renormalization Group,Coupling Constant and Asymp-totic Freedom 640
B.3 Running Coupling Constant in Quantum Electrodynamics (QED) 645
B.4 Running Coupling Constant for SU(2) Gauge Group 646
B.5 Renormalization Group and High Q2 Behavior of Green's Function 647
B.5.1 Gluon Propagator 649
B.5.2 Fermion Propagator 650
B.6 References for Appendices 652
Index 653