当前位置:首页 > 其他书籍
现代粒子物理学导论 第3版=A Modern lntroduction to Particle Physics 3rd Edition
现代粒子物理学导论 第3版=A Modern lntroduction to Particle Physics 3rd Edition

现代粒子物理学导论 第3版=A Modern lntroduction to Particle Physics 3rd EditionPDF电子书下载

其他书籍

  • 电子书积分:20 积分如何计算积分?
  • 作 者:吕植主编
  • 出 版 社:
  • 出版年份:2014
  • ISBN:
  • 页数:0 页
图书介绍:
《现代粒子物理学导论 第3版=A Modern lntroduction to Particle Physics 3rd Edition》目录

1.Introduction 1

1.1 Fundamental Forces 1

1.1.1 The Gravitational Force 2

1.1.2 The Weak Nuclear Force 2

1.1.3 The Electromagnetic Force 3

1.1.4 The Strong Nuclear Force 4

1.2 Relative Strength of Four Fundamental Forces 4

1.3 Range of the Three Basic Forces 5

1.4 Classification of Matter 7

1.5 Strong Color Charges 9

1.6 Fundamental Role of“Charges” in the Unification of Forces 10

1.7 Strong Quark-Quark Force 16

1.8 Grand Unification 18

1.9 Units and Notation 19

1.10 Problems 21

1.11 References 21

2.Scattering and Particle Interaction 23

2.1 Introduction 23

2.2 Kinematics of a Scattering Process 26

2.3 Interaction Picture 31

2.4 Scattering Matrix(S-Matrix) 32

2.5 Phase Space 36

2.6 Examples 39

2.6.1 Two-body Scattering 39

2.6.2 Three-body Decay 41

2.7 Electromagnetic Interaction 50

2.8 Weak Interaction 52

2.9 Hadronic Cross-section 55

2.10 Problems 56

2.11 References 58

3.Space-Time Symmetries 59

3.1 Introduction 59

3.1.1 Rotation and SO(3) Group 60

3.1.2 Translation 62

3.1.3 Lorentz Group 63

3.2 Invariance Principle 65

3.2.1 U Continuous 65

3.2.2 U is Discrete(e.g.Space Reflection) 66

3.3 Parity 66

3.4 Intrinsic Parity 68

3.4.1 Intrinsic Parity of Pion 70

3.5 Parity Constraints on S-Matrix for Hadronic Reactions 71

3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles 71

3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity 72

3.6 Time Reversal 73

3.6.1 Unitarity 74

3.6.2 Reciprocity Relation 75

3.7 Applications 76

3.7.1 Detailed Balance Principle 76

3.8 Unitarity Constraints 77

3.8.1 Two-Particle Partial Wave Unitarity 79

3.9 Problems 85

3.10 References 90

4.Internal Symmetries 91

4.1 Selection Rules and Globally Conserved Quantum Numbers 91

4.2 Isospin 97

4.2.1 Electromagnetic Interaction and Isospin 100

4.2.2 Weak Interaction and Isospin 101

4.3 Resonance Production 101

4.3.1 △-resonance 103

4.3.2 Spin of △ 103

4.4 Charge Conjugation 107

4.5 G-Parity 112

4.6 Problems 113

4.7 References 117

5.Unitary Groups and SU(3) 119

5.1 Unitary Groups and SU(3) 119

5.2 Particle Representations in Flavor SU(3) 124

5.2.1 Mesons 126

5.2.2 Baryons 128

5.3 U-Spin 132

5.4 Irreducible Representations of SU(3) 134

5.4.1 Young's Tableaux 135

5.5 SU(N) 141

5.6 Applications of Flavor SU(3) 145

5.6.1 SU(3) Invariant BBP Couplings 145

5.6.2 VPP Coupling 146

5.7 Mass Splitting in Flavor SU(3) 148

5.8 Problems 154

5.9 References 158

6.SU(6) and Quark Model 159

6.1 SU(6) 159

6.1.1 SU(6) Wave Function for Mesons 160

6.2 Magnetic Moments of Baryons 164

6.3 Radiative Decays of Vector Mesons 170

6.4 Radiative Decays(Complementary Derivation) 176

6.4.1 Mesonic Radiative Decays V=P+γ 176

6.4.2 Baryonic Radiative Decay 177

6.5 Problems 179

6.6 References 180

7.Color,Gauge Principle and Quantum Chromodynamics 181

7.1 Evidence for Color 181

7.2 Gauge Principle 184

7.2.1 Aharanov and Bohm Experiment 186

7.2.2 Gauge Principle for Relativistic Quantum Mechanics 188

7.3 Non-Abelion Local Gauge Transformations(Yang-Mills) 190

7.4 Quantum Chromodynamics(QCD) 194

7.4.1 Conserved Current 197

7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD 199

7.5 Hadron Spectroscopy 202

7.5.1 One Gluon Exchange Potential 202

7.5.2 Long Range QCD Motivated Potential 205

7.5.3 Spin-Spin Interaction 209

7.6 The Mass Spectrum 209

7.6.1 Meson Mass Relations 211

7.6.2 Baryon Mass Spectrum 213

7.7 Problems 217

7.8 References 219

8.Heavy Flavors 221

8.1 Discovery of Charm 221

8.1.1 Isospin 223

8.1.2 SU(3) Classification 223

8.2 Charm 224

8.2.1 Heavy Mesons 224

8.2.2 The Fifth Quark Flavor:Bottom Mesons 228

8.2.3 The Sixth Quark Flavor:The Top 228

8.3 Strong and Radiative Decays of D* Mesons 229

8.4 Heavy Baryons 232

8.5 Quarkonium 233

8.6 Leptonic Decay Width of Quarkonium 237

8.7 Hadronic Decay Width 238

8.8 Non-Relativistic Treatment of Quarkonium 240

8.9 Cbservations 245

8.10 Tetraquark 246

8.11 Problems 249

8.12 References 254

9.Heavy Quark Effective Theory 255

9.1 Effective Lagrangian 255

9.2 Spin Symmetry of Heavy Quark 259

9.3 Mass Spectroscopy for Hadrons with One Heavy Quark 264

9.4 The P-wave Heavy Mesons:Mass Spectroscopy 269

9.5 Decays of P-wave Mesons 275

9.6 Problems 277

9.7 References 277

10.Weak Interaction 279

10.1 V-A Interaction 279

10.1.1 Helicity of the Neutrino 281

10.2 Classification of Weak Processes 281

10.2.1 Purely Leptonic Processes 281

10.2.2 Semileptonic Processes 283

10.2.3 Non-Leptonic Processes 287

10.2.4 μ-Decay 288

10.2.5 Remarks 289

10.2.6 Semi-Leptonic Processes 291

10.3 Baryon Decays 292

10.4 Pseudoscalar Meson Decays 296

10.4.1 Pion Decay 296

10.4.2 Strangeness Changing Semi-Leptonic Decays 297

10.5 Hadronic Weak Decays 299

10.5.1 Non-Leptonic Decays of Hyperons 299

10.5.2 △I=1/2 Rule for Hyperon Decays 302

10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model 304

10.6 Problems 307

10.7 References 310

11.Properties of Weak Hadronic Currents and Chiral Symmetry 311

11.1 Introduction 311

11.2 Conserved Vector Current Hypothesis(CVC) 311

11.3 Partially Conserved Axial Vector Current Hypothesis(PCAC) 314

11.4 Current Algebra and Chiral Symmetry 317

11.4.1 Explicit Breaking of Chiral Symmetry 320

11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons 323

11.5 Axial Anomaly 325

11.6 QCD Sum Rules 327

11.7 Problens 328

11.8 References 329

12.Neutrino 331

12.1 Introduction 331

12.2 Intrinsic Properties of Neutrinos 332

12.3 Mass 332

12.3.1 Constraints on Neutrino Mass 333

12.3.2 Dirac and Majorana Masses 337

12.3.3 Fermion Masses in the Standard Model(SM) and See-saw Mechanism 339

12.4 Neutrino Oscillations 343

12.4.1 Mikheyev-Smirnov-Wolfenstein Effect 345

12.4.2 Evolution of Flavor Eigenstates in Matter 349

12.5 Evidence for Neutrino Oscillations 351

12.5.1 Disappearance Experiments 351

12.5.2 Appearance Experiments 351

12.6 Neutrino Mass Models and Mixing Matrix and Symmetries 355

12.7 Neutrino Magnetic Moment 360

12.8 Problems 362

12.9 References 363

13.Electroweak Unification 365

13.1 Introduction 365

13.2 Spontaneous Symmetry Breaking and Higgs Mechanism 366

13.2.1 Higgs Mechanism 368

13.2.2 Gauge Symmetry Breaking for Chiral U1?U2 Group 369

13.3 Renormalizability 372

13.4 Electroweak Unification 374

13.4.1 Experimental Consequences of the Electroweak Unification 381

13.4.2 Need for Radiative Corrections 382

13.4.3 Experiments which Determine sin2θW 387

13.5 Decay Widths of W and Z Bosons 389

13.6 Tests of Yang-Mills Character of Gauge Bosons 395

13.7 Higgs Boson Mass 399

13.8 Upper Bound 399

13.8.1 Unitarity 399

13.8.2 Finiteness of Couplings 400

13.9 Standard Model,Higgs Boson Searches,Production at De-cays 401

13.9.1 LEP-2 401

13.9.2 LHC and Tevatron 402

13.10 Two Higgs Doublet Model(2HDM) 406

13.11 GIM Mechanism 411

13.12 Cabibbo-Kobayashi-Maskawa Matrix 414

13.13 Axial Anomaly 416

13.14 Problems 421

13.15 References 423

14.Deep Inelastic Scattering 425

14.1 Introduction 425

14.2 Deep-Inelastic Lepton-Nucleon Scattering 427

14.3 Parton Model 431

14.4 Deep Inelastic Neutrino-Nucleon Scattering 436

14.5 Sum Rules 439

14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents 446

14.7 Problems 447

14.8 References 450

15.Weak Decays of Heavy Flavors 451

15.1 Leptonic Decays of τ Lepton 451

15.2 Semi-Hadronic Decays of τ Lepton 453

15.2.1 Special Cases 454

15.3 Weak Decays of Heavy Flavors 457

15.3.1 Leptonic Decays of D and B Mesons 458

15.3.2 Semileptonic Decays of D and B Mesons 459

15.3.3 (Exclusive)Semileptonic Decays of D and B Mesons 464

15.3.4 Weak Hadronic Decays of B Mesons 471

15.3.5 Inclusive Hadronic B Decays 476

15.3.6 Radiative Decays of Bq Mesons 478

15.4 Inclusive Hadronic Decays of D-Mesons 479

15.4.1 Scattering and Annihilation Diagrams 480

15.5 Problems 484

15.6 References 487

16.Particle Mixing and CP-Violation 489

16.1 Introduction 489

16.2 CPT and CP Invariance 492

16.3 CP-Violation in the Standard Model 494

16.4 Particle Mixing 497

16.5 K0-?0 Complex and CP-Violation in K-Decay 504

16.6 B0-?0 Complex 511

16.7 CP-Violation in B-Decays 515

16.8 CP-Violation in Hadronic Weak Decays of Baryons 518

16.9 Problems 522

16.10 References 523

17.Grand Unification,Supersymmetry and Strings 525

17.1 Grand Unification 525

17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale 529

17.1.2 General Consequences of GUTS 531

17.2 PoincaréGroup and Supersymmetry 534

17.2.1 Introduction 534

17.2.2 Poincaré Group 537

17.2.3 Two-Component Weyl Spinors 539

17.2.4 Spinor Algebra,Supersymmetry 540

17.2.5 Supersymmetric Multiplets 542

17.3 Supersymmetry and Strings 544

17.3.1 Introduction 544

17.3.2 Supersymmetry 545

17.4 String Theory and Duality 548

17.4.1 M-theory 550

17.5 Some Important Results 552

17.6 Conclusions 552

17.7 Problems 552

17.8 References 554

18.Cosmology and Astroparticle Physics 557

18.1 Cosmological Principle and Expansion of the Universe 557

18.2 The Standard Model of Cosmology 559

18.3 Cosmological Parameters and the Standard Model Solutions 562

18.4 Accelerating Universe and Dark Energy 566

18.4.1 Evidence from Supernovae 567

18.4.2 Evidence from CMB Data 568

18.4.3 Quintessence 571

18.4.4 Modified Gravity 573

18.5 Hot Big Bang:Thermal History ofthe Universe 574

18.5.1 Thermal Equilibrium 574

18.5.2 The Radiation Era 576

18.6 Freeze Out 581

18.7 Limit on Neutrino Mass 584

18.8 Primordial Nucleosynthesis 585

18.9 Infation 588

18.9.1 Horizon Problem 588

18.9.2 Flatness Problem 590

18.9.3 Realization of Inflation 591

18.9.4 Slow-roll Inflation 593

18.10 Baryogenesis 595

18.10.1 Sakharov's Conditions 597

18.10.2 Various Scenarios for Baryogenesis 598

18.10.3 Leptogenesis 601

18.11 Problems 606

18.12 References 607

Appendix A Quantum Field Theory 609

A.1 Spin 0 Field 609

A.2 Spin 1/2 Particle 611

A.2.1 Pauli Representation of γ Matrices 612

A.2.2 Weyl Representation of γ Matrices 613

A.3 Trace of γ Matrices 616

A.4 Spin 1 Field 618

A.5 Massive Spin 1 Particle 619

A.6 Feynman Rules for S-Matrix in Momentum Space 620

A.7 Application of Feynman Rules 621

A.7.1 e+e-→Hadrons 624

A.7.2 Electron Scattering and Structureless Spin 1/2 Target 625

A.8 Discrete Symmetries 628

A.8.1 Charge Conjugation 628

A.8.2 Space Reflection 631

A.8.3 Time Reversal 632

A.9 Problems 633

Appendix B Renormalization Group and Running Coupling Constant 639

B.1 Feynman Rules for Quantum Chromodynamics 639

B.2 Renormalization Group,Coupling Constant and Asymp-totic Freedom 640

B.3 Running Coupling Constant in Quantum Electrodynamics (QED) 645

B.4 Running Coupling Constant for SU(2) Gauge Group 646

B.5 Renormalization Group and High Q2 Behavior of Green's Function 647

B.5.1 Gluon Propagator 649

B.5.2 Fermion Propagator 650

B.6 References for Appendices 652

Index 653

返回顶部