第一章 关于阿贝尔方法 1
1和差变换及其应用 2
2阿贝尔引理应用于级数收敛性问题 7
3阿贝尔的级数求和法 15
4分部积分法与积分中值定理 20
关于第一章的注释 38
第二章 幂级数在计算中的应用 41
1线性不定方程解的个数问题 42
2有关二项系数的计算 56
3差分算子Δ的简单应用 71
4欧拉-麦克劳林求和公式 79
5微分算子及函数方程在计算中的应用 97
关于第二章的注释 109
第三章 不等式 114
1若干简单的有穷不等式 115
2平均值与有穷不等式 129
3积分不等式、无穷不等式及函数的凸性 139
4关于不等式的补充命题及杂题 150
5关于常用函数的若干不等式 165
关于第三章的注释 175
第四章 阶的计算法及有关问题 180
1阶的估计法应用于收敛性问题 182
2若干渐近估计及切比雪夫质数定理的证法 198
3有关无穷大强度的问题 209
4若干渐近展开公式及其应用 214
5插值余项阶的估计 228
关于第四章的注释 244
中外人名译法对照 249
主要参考书 253