Chapter 1 Crystal Structures and Interatomic Forces 2
1.1 Introduction 2
1.2 The crystalline state 2
1.3 Basic definitions 3
1.4 The fourteen Bravais lattices and the seven crystal systems 7
1.5 Elements of symmetry 10
1.6 Nomenclature of crystal directions and crystal planes;Miller indices 12
1.7 Examples of simple crystal structures 16
1.8 Amorphous solids and liquids 20
1.9 Interatomic forces 23
1.10 Types of bonding 24
Chapter 2 X-Ray,Neutron,and Electron Diffraction in Crystals 34
2.1 Introduction 34
2.2 Generation and absorption of x-rays 34
2.3 Bragg's law 35
2.4 Scattering from an atom 37
2.5 Scattering from a crystal 42
2.6 The reciprocal lattice and x-ray diffraction 46
2.7 The diffraction condition and Bragg's law 51
2.8 Scattering from liquids 53
2.9 Experimental techniques 55
2.10 Other x-ray applications in solid-state physics 58
2.11 Neutron diffraction 59
2.12 Electron diffraction 60
Chapter 3 Lattice Vibrations:Thermal,Acoustic,and Optical Properties 68
3.1 Introduction 68
3.2 Elastic waves 68
3.3 Enumeration of modes;density of states of a continuous medium 70
3.4 Specific heat:models of Einstein and Debye 75
3.5 The phonon 86
3.6 Lattice waves 87
3.7 Density of states of a lauice 104
3.8 Specific heat:exact theory 107
3.9 Thermal conductivity 107
3.10 Scattering of x-rays,neutrons,and light by phonons 112
3.11 Microwave ultrasonics 117
3.12 Lattice optical properties in the infrared 121
Chapter 4 Metals Ⅰ:The Free-Electron Model 138
4.1 Introduction 138
4.2 Conduction electrons 138
4.3 The free-electron gas 140
4.4 Electrical conductivity 142
4.5 Electrical resistivity versus temperature 147
4.6 Heat capacity of conduction electrons 151
4.7 The Fermi surface 154
4.8 Electrical conductivity:effects of the Fermi surface 156
4.9 Thermal conductivity in metals 157
4.10 Motion in a magnetic field:cyclotron resonance and the Hall effect 160
4.11 The AC conductivity and optical properties 163
4.12 Thermionic emission 167
4.13 Failure of the free-electron model 169
Chapter 5 Metals Ⅱ:Energy Bands in Solids 176
5.1 Introduction 176
5.2 Energy spectra in atoms,molecules,and solids 176
5.3 Energy bands in solids;the Bloch theorem 179
5.4 Band symmetry in k-space;Brillouin zones 184
5.5 Number of states in the band 188
5.6 The nearly-free-electron model 189
5.7 The energy gap and the Bragg reflection 196
5.8 The tight-binding model 198
5.9 Calculations of energy bands 205
5.10 Metals,insulators,and semiconductors 210
5.11 Density of states 213
5.12 The Fermi surface 216
5.13 Velocity of the Bloch electron 221
5.14 Electron dynamics in an electric field 225
5.15 The dynamical effective mass 227
5.16 Momentum,crystal momentum,and physical origin of the effective mass 230
5.17 The hole 233
5.18 Electrical conductivity 235
5.19 Electron dynamics in a magnetic field:cyclotron resonance and the Hall effect 238
5.20 Experimental methods in determination of band structure 241
5.21 Limit of the band theory;metal-insulator transition 244
Chapter 6 Semiconductors Ⅰ:Theory 254
6.1 Introduction 254
6.2 Crystal structure and bonding 254
6.3 Band structure 257
6.4 Carrier concentration;intrinsic semiconductors 260
6.5 Impurity states 265
6.6 Semiconductor statistics 269
6.7 Electrical conductivity;mobility 272
6.8 Magnetic field effects:cyclotron resonance and Hall effect 278
6.9 Band structure of real semiconductors 282
6.10 High electric field and hot electrons 287
6.11 The Gunn effect 288
6.12 Optical properties:absorption processes 292
6.13 Photoconductivity 300
6.14 Luminescence 302
6.15 Other optical effects 304
6.16 Sound-wave amplification(acoustoelectric effect) 304
6.17 Diffusion 306
Chapter 7 Semiconductors Ⅱ:Devices 320
7.1 Introduction 320
7.2 The p-n junction:the rectifier 320
7.3 The p-n junction:the junction itself 330
7.4 The junction transistor 335
7.5 The tunnel diode 338
7.6 The Gunn diode 340
7.7 The semiconductor laser 346
7.8 The field-effect transistor,the semiconductor lamp,and other devices 353
7.9 Integrated circuits and microelectronics 361
Chapter 8 Dielectric and Optical Properties of Solids 372
8.1 Introduction 372
8.2 Review of basic formulas 372
8.3 The dielectric constant and polarizability;the local field 376
8.4 Sources of polarizability 381
8.5 Dipolar polarizability 384
8.6 Dipolar dispersion 389
8.7 Dipolar polarization in solids 394
8.8 Ionic polarizability 398
8.9 Electronic polarizability 400
8.10 Piezoelectricity 406
8.11 Ferroelectricity 408
Chapter 9 Magnetism and Magnetic Resonances 424
9.1 Introduction 424
9.2 Review of basic formulas 424
9.3 Magnetic susceptibility 429
9.4 Classification of materials 430
9.5 Langevin diamagnetism 431
9.6 Paramagnetism 433
9.7 Magnetism in metals 441
9.8 Ferromagnetism in insulators 444
9.9 Antiferromagnetism and ferrimagnetism 450
9.10 Ferromagnetism in metals 454
9.11 Ferromagnetic domains 457
9.12 Paramagnetic resonance,the maser 464
9.13 Nuclear magnetic resonance 475
9.14 Ferromagnetic resonance;spin waves 479
Chapter 10 Superconductivity 496
10.1 Introduction 496
10.2 Zero resistance 496
10.3 Perfect diamagnetism,or the Meissner effect 500
10.4 The critical field 501
10.5 Thermodynamics of the superconducting transition 503
10.6 Electrodynamics of superconductors 507
10.7 Theory of superconductivity 511
10.8 Tunneling and the Josephson effect 516
10.9 Miscellaneous topics 518
Chapter 11 Topics in Metallurgy and Defects in Solids 528
11.1 Introduction 528
11.2 Types of imperfections 528
11.3 Vacancies 530
11.4 Diffusion 533
11.5 Metallic alloys 542
11.6 Dislocations and the mechanical strength of metals 555
11.7 Ionic conductivity 563
11.8 The photographic process 564
11.9 Radiation damage in solids 568
Chapter 12 Materials and Solid-State Chemistry 578
12.1 Introduction 578
12.2 Amorphous semiconductors 578
12.3 Liquid crystals 587
12.4 Polymers 597
12.5 Nuclear magnetic resonance in chemistry 604
12.6 Electron spin resonance in chemistry 611
12.7 Chemical applications of the M?ssbauer effect 617
Chapter 13 Solid-State Biophysics 628
13.1 Introduction 628
13.2 Biological applications of delocalization in molecules 629
13.3 Nucleic acids 632
13.4 Proteins 634
13.5 Miscellaneous topics 640
Appendix Elements of Quantum Mechanics 644
A.1 Basic concepts 644
A.2 The Schr?dinger equation 644
A.3 One-dimensional examples 645
A.4 The angular momentum 645
A.5 The hydrogen atom;multielectron atoms;periodic table of the elements 646
A.6 Perturbation theory 647
A.7 The hydrogen molecule and the covalent bond 650
A.8 Directed bonds 653
Index 658