当前位置:首页 > 数理化
固态物理学基础
固态物理学基础

固态物理学基础PDF电子书下载

数理化

  • 电子书积分:19 积分如何计算积分?
  • 作 者:(美)奥马尔著
  • 出 版 社:上海:世界图书上海出版公司
  • 出版年份:2011
  • ISBN:9787510035197
  • 页数:669 页
图书介绍:本书是一部优秀的介绍固态物理学入门类书籍,也是一本很好的本科生教材。本书是1975年版本的修订版,在原来的基础上做了不少改进。内容安排结构紧凑,合理,逻辑性强。尽管本书出版的比较早,但不失经典,覆盖面广,囊括了许多读者了解的话题。
《固态物理学基础》目录

Chapter 1 Crystal Structures and Interatomic Forces 2

1.1 Introduction 2

1.2 The crystalline state 2

1.3 Basic definitions 3

1.4 The fourteen Bravais lattices and the seven crystal systems 7

1.5 Elements of symmetry 10

1.6 Nomenclature of crystal directions and crystal planes;Miller indices 12

1.7 Examples of simple crystal structures 16

1.8 Amorphous solids and liquids 20

1.9 Interatomic forces 23

1.10 Types of bonding 24

Chapter 2 X-Ray,Neutron,and Electron Diffraction in Crystals 34

2.1 Introduction 34

2.2 Generation and absorption of x-rays 34

2.3 Bragg's law 35

2.4 Scattering from an atom 37

2.5 Scattering from a crystal 42

2.6 The reciprocal lattice and x-ray diffraction 46

2.7 The diffraction condition and Bragg's law 51

2.8 Scattering from liquids 53

2.9 Experimental techniques 55

2.10 Other x-ray applications in solid-state physics 58

2.11 Neutron diffraction 59

2.12 Electron diffraction 60

Chapter 3 Lattice Vibrations:Thermal,Acoustic,and Optical Properties 68

3.1 Introduction 68

3.2 Elastic waves 68

3.3 Enumeration of modes;density of states of a continuous medium 70

3.4 Specific heat:models of Einstein and Debye 75

3.5 The phonon 86

3.6 Lattice waves 87

3.7 Density of states of a lauice 104

3.8 Specific heat:exact theory 107

3.9 Thermal conductivity 107

3.10 Scattering of x-rays,neutrons,and light by phonons 112

3.11 Microwave ultrasonics 117

3.12 Lattice optical properties in the infrared 121

Chapter 4 Metals Ⅰ:The Free-Electron Model 138

4.1 Introduction 138

4.2 Conduction electrons 138

4.3 The free-electron gas 140

4.4 Electrical conductivity 142

4.5 Electrical resistivity versus temperature 147

4.6 Heat capacity of conduction electrons 151

4.7 The Fermi surface 154

4.8 Electrical conductivity:effects of the Fermi surface 156

4.9 Thermal conductivity in metals 157

4.10 Motion in a magnetic field:cyclotron resonance and the Hall effect 160

4.11 The AC conductivity and optical properties 163

4.12 Thermionic emission 167

4.13 Failure of the free-electron model 169

Chapter 5 Metals Ⅱ:Energy Bands in Solids 176

5.1 Introduction 176

5.2 Energy spectra in atoms,molecules,and solids 176

5.3 Energy bands in solids;the Bloch theorem 179

5.4 Band symmetry in k-space;Brillouin zones 184

5.5 Number of states in the band 188

5.6 The nearly-free-electron model 189

5.7 The energy gap and the Bragg reflection 196

5.8 The tight-binding model 198

5.9 Calculations of energy bands 205

5.10 Metals,insulators,and semiconductors 210

5.11 Density of states 213

5.12 The Fermi surface 216

5.13 Velocity of the Bloch electron 221

5.14 Electron dynamics in an electric field 225

5.15 The dynamical effective mass 227

5.16 Momentum,crystal momentum,and physical origin of the effective mass 230

5.17 The hole 233

5.18 Electrical conductivity 235

5.19 Electron dynamics in a magnetic field:cyclotron resonance and the Hall effect 238

5.20 Experimental methods in determination of band structure 241

5.21 Limit of the band theory;metal-insulator transition 244

Chapter 6 Semiconductors Ⅰ:Theory 254

6.1 Introduction 254

6.2 Crystal structure and bonding 254

6.3 Band structure 257

6.4 Carrier concentration;intrinsic semiconductors 260

6.5 Impurity states 265

6.6 Semiconductor statistics 269

6.7 Electrical conductivity;mobility 272

6.8 Magnetic field effects:cyclotron resonance and Hall effect 278

6.9 Band structure of real semiconductors 282

6.10 High electric field and hot electrons 287

6.11 The Gunn effect 288

6.12 Optical properties:absorption processes 292

6.13 Photoconductivity 300

6.14 Luminescence 302

6.15 Other optical effects 304

6.16 Sound-wave amplification(acoustoelectric effect) 304

6.17 Diffusion 306

Chapter 7 Semiconductors Ⅱ:Devices 320

7.1 Introduction 320

7.2 The p-n junction:the rectifier 320

7.3 The p-n junction:the junction itself 330

7.4 The junction transistor 335

7.5 The tunnel diode 338

7.6 The Gunn diode 340

7.7 The semiconductor laser 346

7.8 The field-effect transistor,the semiconductor lamp,and other devices 353

7.9 Integrated circuits and microelectronics 361

Chapter 8 Dielectric and Optical Properties of Solids 372

8.1 Introduction 372

8.2 Review of basic formulas 372

8.3 The dielectric constant and polarizability;the local field 376

8.4 Sources of polarizability 381

8.5 Dipolar polarizability 384

8.6 Dipolar dispersion 389

8.7 Dipolar polarization in solids 394

8.8 Ionic polarizability 398

8.9 Electronic polarizability 400

8.10 Piezoelectricity 406

8.11 Ferroelectricity 408

Chapter 9 Magnetism and Magnetic Resonances 424

9.1 Introduction 424

9.2 Review of basic formulas 424

9.3 Magnetic susceptibility 429

9.4 Classification of materials 430

9.5 Langevin diamagnetism 431

9.6 Paramagnetism 433

9.7 Magnetism in metals 441

9.8 Ferromagnetism in insulators 444

9.9 Antiferromagnetism and ferrimagnetism 450

9.10 Ferromagnetism in metals 454

9.11 Ferromagnetic domains 457

9.12 Paramagnetic resonance,the maser 464

9.13 Nuclear magnetic resonance 475

9.14 Ferromagnetic resonance;spin waves 479

Chapter 10 Superconductivity 496

10.1 Introduction 496

10.2 Zero resistance 496

10.3 Perfect diamagnetism,or the Meissner effect 500

10.4 The critical field 501

10.5 Thermodynamics of the superconducting transition 503

10.6 Electrodynamics of superconductors 507

10.7 Theory of superconductivity 511

10.8 Tunneling and the Josephson effect 516

10.9 Miscellaneous topics 518

Chapter 11 Topics in Metallurgy and Defects in Solids 528

11.1 Introduction 528

11.2 Types of imperfections 528

11.3 Vacancies 530

11.4 Diffusion 533

11.5 Metallic alloys 542

11.6 Dislocations and the mechanical strength of metals 555

11.7 Ionic conductivity 563

11.8 The photographic process 564

11.9 Radiation damage in solids 568

Chapter 12 Materials and Solid-State Chemistry 578

12.1 Introduction 578

12.2 Amorphous semiconductors 578

12.3 Liquid crystals 587

12.4 Polymers 597

12.5 Nuclear magnetic resonance in chemistry 604

12.6 Electron spin resonance in chemistry 611

12.7 Chemical applications of the M?ssbauer effect 617

Chapter 13 Solid-State Biophysics 628

13.1 Introduction 628

13.2 Biological applications of delocalization in molecules 629

13.3 Nucleic acids 632

13.4 Proteins 634

13.5 Miscellaneous topics 640

Appendix Elements of Quantum Mechanics 644

A.1 Basic concepts 644

A.2 The Schr?dinger equation 644

A.3 One-dimensional examples 645

A.4 The angular momentum 645

A.5 The hydrogen atom;multielectron atoms;periodic table of the elements 646

A.6 Perturbation theory 647

A.7 The hydrogen molecule and the covalent bond 650

A.8 Directed bonds 653

Index 658

返回顶部