1.INTRODUCTION:G.L.SHIRES 1
1.0.Chapter objectives 1
1.1.Two-phase flow 1
1.2.Nomenclature 4
1.3.The need to study two-phase flow 7
1.4.The information required 9
1.5.Guide to the chapters 10
1.5.1.Two-phase flow 11
1.5.2.Two-phase heat transfer 13
1.5.3.Hydrodynamic instability 16
1.5.4.Condensation 17
1.5.5.Loss-of-coolant accidents 17
2.FLOW PATTERNS:G.F.HEWITT 18
2.0.Chapter objectives 18
2.1.The definition of flow regimes 18
2.2.Delineation of flow patterns 22
2.3.Flow-pattern maps 24
2.4.Mechanistic approach to flow pattern delineation. 27
2.5.Phase change and phase equilibrium 35
2.6.Flow and heat-transfer regimes in evaporating and condensing systems 36
3.ONE-DIMENSIONAL FLOW:D.BUTTERWORTH 40
3.0.Chapterobjectives 40
3.1.Introduction 40
3.2.Continuity relationship 41
3.3.Single phase momentum and energy balances 44
3.4.Two-phase energy and momentum balances 46
3.4.1.Momentum equation 46
3.4.2.Energy equation 48
3.4.3.Homogeneous equation 49
3.4.4.Relationship between the momentum and energy equations 49
3.5.Introduction to critical flow 51
3.6.Integrated form of the momentum equation 54
4.EMPIRICAL METHODS FOR PRESSURE DROP:D.BUTTERWORTH 58
4.0.Chapter objectives 58
4.1.Introduction 58
4.2.Correlating parameters 61
4.3.Homogeneous flow 66
4.4.Separated flow 68
4.4.1.Separate cylinders model 68
4.4.2 Lockhart-Martinelli correlation 70
4.5.Mixed-flow models 72
4.5.1.Baroczy correlation 72
4.5.2.Chisholm and Sutherland correlation 75
4.6.Void-fraction correlations 79
4.7.Relationship between void fraction and frictional pressure gradient 82
4.8.Integrated forms of the momentum equation 83
4.9.Pressure drop in fittings 86
4.9.1.Abrupt enlargement in flow area 86
4.9.2.Abrupt reduction in flow area 88
4.9.3.Bends 89
5.VERTICAL BUBBLE AND SLUG FLOW:G.F.HEWITT 91
5.0.Chapter objectives 91
5.1.One-dimensional two-phase flow 91
5.2.Unsteady one-dimensional flow 96
5.3.The Bankoff variable-density model 97
5.4.Generalized model for slip:Zuber and Findlay analysis 99
5.5.Techniques for local void measurement in bubble flow 101
5.6.Vertical slug flow 103
6.VERTICAL ANNULAR FIoW:G.F.HEWITT 107
6.0.Chapter objectives 107
6.1.Parameters in annular flow 107
6.2.The’triangular relationship’ 108
6.3.Interfacial waves in annular flow 113
6.4.Measurement of liquid-entrained fraction 119
6.5.Droplet mass transfer 122
6.6.Liquid entrainment 125
6.7.Application of the closed-form solution for annular flow 126
7.POOL BOILING:D.B.R.KENNING 128
7.0.Chapter objectives 128
7.1.Introduction and definitions 128
7.2.The boiling curve 130
7.3.Effect of surface conditions 133
7.4.Effect of geometry 134
7.5.Effect of pressure 134
7.6.Effect of time-varying surface temperature 137
7.7.Effect of non-uniform surface temperature 137
7.8.Effect of dissolved gas 137
7.9.Low-liquid regimes 137
7.10.Stable film boiling 139
7.11.Critical heat flux 141
7.12.Nucleate boiling 143
7.12.1.Bubble nucleation 143
7.12.2.Bubble growth 148
7.12.3 Heat-transfer models 150
7.13 Conclusion 152
8.NUCLEATE BOILING IN FORCED CONVECTION:D.B.R.KENNING 153
8.0.Chapter objectives 153
8.1.Introduction 153
8.2.Bubble nucleation 155
8.3.Heat-transfer correlations 158
8.4.Void fraction in subcooled boiling 161
8.5.Pressure drop in subcooled boiling 167
8.6.Conclusion 169
9.CONVECTIVE HEAT TRANSFER IN ANNULAR FLOW:R.A.W.SHOCK 170
9.0.Chapter objectives 170
9.1.Introduction to annular-flow heat transfer 170
9.2.Laminar-flow solutions 172
9.2.1.The energy equation 172
9.2.2.Case 1. 174
9.2.3.Case 2. 176
9.2.4.Case 3. 176
9.2.5.Case 4. 178
9.3.Turbulent-flow solutions 178
9.4.Heat transfer in two-component systems 189
10.ESTIMATION METHODS FOR FORCED-CONVECTIVE BOILING:R.A.W.SHOCK 200
10.0.Chapter objectives 200
10.1.Convective correlations and relation to theories 200
10.2.Superposition of nucleate boiling in saturated and subtooled boiling 204
10.2.1.Introduction 204
10.2.2.Partial subcooled boiling 205
10.2.3.Saturated convective boiling 213
11.BOILING AND FLOW IN HORIZONTAL TUBES:D.BUTTERWORTH and J.M.ROBERTSON 223
11.0.Chapter objectives 223
11.1.Flow-pattern map for horizontal flow 223
11.2.Stratified flow 226
11.2.1.Useful geometric relationships 226
11.2.2.Laminar flow in both phases 227
11.2.3.Laminar liquid-turbulent gas 229
11.2.4.Turbulent flow of both phases 232
11.3.Stratified to slug transition. 232
11.4.Slug flow 234
11.5.Bubble flow 234
11.6.Annular flow 235
11.6.1.Illustration of horizontal annular flow 235
11.6.2.Suggested mechanisms for transporting liquid to the top of the tube 236
11.7.Heat-transfer coefficients 242
11.8.Burnout in horizontal tubes 243
11.8.1.Occurrence of burnout and its effect in practice 243
11.8.2.Observations of burnout in horizontal tubes 244
11.8.3.Tentative interpretations of burnout data 249
12.INTRODUCTION TO BURNOUT:G.L.SHIRES 252
12.0.Chapter objectives 252
12.1.A description of burnout 252
12.2.History 255
12.3.Factors influencing burnout 255
12.4.Evaluation of burnout 258
12.5.Basic burnout measurements in vertical straight tubes 260
12.5.1.Uniform heat flux 260
12.5.2.Straight tube,non-uniform heat flux 262
12.6.Modelling of burnout using Freon 264
12.7.Burnout in complex geometries 267
12.7.1.Burnout evaluation of reactor fuel 268
12.7.2.Burnout evaluation of boiler tubes 273
12.8.Summary 278
13.MECHANISMS OF BURNOUT:G.F.HEWITT 279
13.0.Chapter objectives 279
13.1.Definition of burnout 279
13.2.Evaluation of the burnout mechanism 280
13.3.The entrainment diagram and its applications 284
13.4.Calculation of onset of burnout in annular flow 291
14.PREDICTION OF BURNOUT:D.H.LEE 295
14.0.Chapter objectives 295
14.1.Trend of parameters 295
14.1.1.Inlet subcooling 296
14.1.2.Mass velocity 297
14.1.3.Pressure 298
14.1.4.Geometry 300
14.1.5.Local quality 301
14.2.Accuracy of burnout correlation 305
14.3.Correlating parameters 305
14.4.Burnout in tubes 306
14.5.Burnout in tubes at high pressure 309
14.6.Burnout in rectangular channels 309
14.7.Burnout in annular channels 311
14.8.Burnout in rod clusters 313
14.8.1.Whole channel model for correlating rod-cluster burnout 313
14.8.2.Subchannel models for correlating rod-cluster burnout 316
14.9.Secondary effects influencing prediction of burnout 319
14.9.1.Heat-flux profile 319
14.9.2.Direction of flow 320
14.10.Prediction of burnout margin 321
15.FOULING IN BOILING-WATER SYSTEMS:R.V.MACBETH 323
15.0.Chapter objectives 323
15.1.Introduction 323
15.2.Problems of experimenting with crud 324
15.3.The nature of crud deposits 326
15.4.The nature of boiling on a crudded surface 329
15.5.Model of wick boiling in a magnetite crud deposit 332
15.6.Effect of crud deposits on surface temperature 335
15.7.Effect of crud deposits on burnout 337
15.8.The effect of crud deposits on frictional pressure drop 339
16.INTRODUCTION TO HYDRODYNAMIC INSTABILITY:N.A.BAILEY 343
16.0.Chapter objectives 343
16.1.Introduction 343
16.2.The ‘Ledinegg’instability 344
16.3.Oscillations due to compressible volumes 348
16.4.Flow oscillations due to the growth of voids 349
16.5.Acoustic effects 351
16.6.Parallel-channel and natural-circulation loop instability 352
16.7.Situations where instabilities arise 353
16.8.The designer’s requirements 354
16.9.Experimental methods to determine the onset of parallel-channel or natural-circulation-loop instability 356
16.10.A review of some experimental investigations into the onset of hydrodynamic instability 359
16.10.1.Natural-circulation-loop instability 361
16.10.2.Parallel-channel instability 364
16.11.Prorlems arising in the application of models and tests to designs 371
16.12.The application of models and experimental tests to plant problems 372
17.OSCILLATORY INSTABILITY:R.POTTER 374
17.0.Chapter objectives 374
17.1.Introduction 374
17.2.General background to instabilities and noise amplification 375
17.3.Outline of feedback analysis 376
17.4.Example of an instability mode in boiling-water reactors 380
17.5.Hydrodynamic instability 382
17.6.Illustrative example 385
17.7.Circuit geometry 389
17.8.Other methods of analysis 391
17.9.Concluding remarks 393
18.INTRODUCTION TO CONDENSATION:D.BUTTERWORTH 394
18.0.Chapter objectives 394
18.1.Modes of condensation 394
18.2.Resistances to heat transfer during condensation 396
18.3.Homogeneous condensation 399
18.3.1.Droplet equilibrium 399
18.3.2.Nucleation 400
18.4.Dropwise condensation 403
18.5.Direct-contact condensation 405
18.5.1.Spray condensers 405
18.5.2.Pool condensers 409
18.6.Interfacial resistance 409
18.7.Gas-phase heat and mass transfer 413
18.7.1.Mass transfer 413
18.7.2.Effect of mass transfer on heat transfer 415
18.7.3.Condensing curves 418
18.7.4.Single vapour in the presence of incondensable gas 420
18.7.5.Multicomponent condensation 423
18.8.Effect of condensation on interfacial shear stress 425
19.FILMWISE CONDENSATION:D.BUTTERWORTB 426
19.0.Chapter objectives 426
19.1.Condensation on a vertical surface 426
19.1.1.Laminar film condensation-Nusselt solution 426
19.1.2.Extension of the Nusselt analysis to include subcooling and non-linear temperature profile 433
19.1.3.Inclusion of inertial effects 438
19.1.4.Effect of vapour superheat 440
19.1.5.Effect of waves 441
19.1.6.Effect of turbulence 443
19.2.Condensation on a horizontal tube 447
19.2.1.Outside a single tube 447
19.2.2.Condensation outside a bundle of tubes 448
19.2.3.Inside a horizontal tube 451
19.3.Condensation with high vapour shear 453
19.3.1.Different tube orientations and vapour flow directions 453
19.3.2.Horizontal tube with perpendicular vapour flow 454
19.3.3.Flow in a tube 455
19.4.Special surfaces for enhancing film condensation 459
20.LOSS-OF-COOLANT ACCIDENTS:I.BRITTAIN 463
20.0.Chapter objectives 463
20.1.Introduction 463
20.2.Fuel-pin behaviour 465
20.3.The loss-of-coolant accident 466
20.3.1.Blow-down phase 468
20.3.2.Core heat-up phase 468
20.3.3.Reflood phase 468
20.4.Critical-flow model 469
20.5.Hydrodynamics and heat transfer during blow-down 471
20.5.1.Fuel-pin heat transfer 471
20.5.2.Burnout correlations 472
20.5.3.Pump models 473
20.5.4.Steam drum behaviour 473
20.6.The s?agnation problem 474
20.7.Emergency core-cooling systems 476
20.8.Summary 477
REFERENCES 479
INDEX 511