当前位置:首页 > 外文
TWO-PHASE FLOW AND HEAT TRANSFER
TWO-PHASE FLOW AND HEAT TRANSFER

TWO-PHASE FLOW AND HEAT TRANSFERPDF电子书下载

外文

  • 电子书积分:16 积分如何计算积分?
  • 作 者:D.BUTTERWORTH AND G.F.HEWITT
  • 出 版 社:OXFORD UNIVERSITY PRESS
  • 出版年份:2222
  • ISBN:0198517157
  • 页数:514 页
图书介绍:
《TWO-PHASE FLOW AND HEAT TRANSFER》目录
标签:

1.INTRODUCTION:G.L.SHIRES 1

1.0.Chapter objectives 1

1.1.Two-phase flow 1

1.2.Nomenclature 4

1.3.The need to study two-phase flow 7

1.4.The information required 9

1.5.Guide to the chapters 10

1.5.1.Two-phase flow 11

1.5.2.Two-phase heat transfer 13

1.5.3.Hydrodynamic instability 16

1.5.4.Condensation 17

1.5.5.Loss-of-coolant accidents 17

2.FLOW PATTERNS:G.F.HEWITT 18

2.0.Chapter objectives 18

2.1.The definition of flow regimes 18

2.2.Delineation of flow patterns 22

2.3.Flow-pattern maps 24

2.4.Mechanistic approach to flow pattern delineation. 27

2.5.Phase change and phase equilibrium 35

2.6.Flow and heat-transfer regimes in evaporating and condensing systems 36

3.ONE-DIMENSIONAL FLOW:D.BUTTERWORTH 40

3.0.Chapterobjectives 40

3.1.Introduction 40

3.2.Continuity relationship 41

3.3.Single phase momentum and energy balances 44

3.4.Two-phase energy and momentum balances 46

3.4.1.Momentum equation 46

3.4.2.Energy equation 48

3.4.3.Homogeneous equation 49

3.4.4.Relationship between the momentum and energy equations 49

3.5.Introduction to critical flow 51

3.6.Integrated form of the momentum equation 54

4.EMPIRICAL METHODS FOR PRESSURE DROP:D.BUTTERWORTH 58

4.0.Chapter objectives 58

4.1.Introduction 58

4.2.Correlating parameters 61

4.3.Homogeneous flow 66

4.4.Separated flow 68

4.4.1.Separate cylinders model 68

4.4.2 Lockhart-Martinelli correlation 70

4.5.Mixed-flow models 72

4.5.1.Baroczy correlation 72

4.5.2.Chisholm and Sutherland correlation 75

4.6.Void-fraction correlations 79

4.7.Relationship between void fraction and frictional pressure gradient 82

4.8.Integrated forms of the momentum equation 83

4.9.Pressure drop in fittings 86

4.9.1.Abrupt enlargement in flow area 86

4.9.2.Abrupt reduction in flow area 88

4.9.3.Bends 89

5.VERTICAL BUBBLE AND SLUG FLOW:G.F.HEWITT 91

5.0.Chapter objectives 91

5.1.One-dimensional two-phase flow 91

5.2.Unsteady one-dimensional flow 96

5.3.The Bankoff variable-density model 97

5.4.Generalized model for slip:Zuber and Findlay analysis 99

5.5.Techniques for local void measurement in bubble flow 101

5.6.Vertical slug flow 103

6.VERTICAL ANNULAR FIoW:G.F.HEWITT 107

6.0.Chapter objectives 107

6.1.Parameters in annular flow 107

6.2.The’triangular relationship’ 108

6.3.Interfacial waves in annular flow 113

6.4.Measurement of liquid-entrained fraction 119

6.5.Droplet mass transfer 122

6.6.Liquid entrainment 125

6.7.Application of the closed-form solution for annular flow 126

7.POOL BOILING:D.B.R.KENNING 128

7.0.Chapter objectives 128

7.1.Introduction and definitions 128

7.2.The boiling curve 130

7.3.Effect of surface conditions 133

7.4.Effect of geometry 134

7.5.Effect of pressure 134

7.6.Effect of time-varying surface temperature 137

7.7.Effect of non-uniform surface temperature 137

7.8.Effect of dissolved gas 137

7.9.Low-liquid regimes 137

7.10.Stable film boiling 139

7.11.Critical heat flux 141

7.12.Nucleate boiling 143

7.12.1.Bubble nucleation 143

7.12.2.Bubble growth 148

7.12.3 Heat-transfer models 150

7.13 Conclusion 152

8.NUCLEATE BOILING IN FORCED CONVECTION:D.B.R.KENNING 153

8.0.Chapter objectives 153

8.1.Introduction 153

8.2.Bubble nucleation 155

8.3.Heat-transfer correlations 158

8.4.Void fraction in subcooled boiling 161

8.5.Pressure drop in subcooled boiling 167

8.6.Conclusion 169

9.CONVECTIVE HEAT TRANSFER IN ANNULAR FLOW:R.A.W.SHOCK 170

9.0.Chapter objectives 170

9.1.Introduction to annular-flow heat transfer 170

9.2.Laminar-flow solutions 172

9.2.1.The energy equation 172

9.2.2.Case 1. 174

9.2.3.Case 2. 176

9.2.4.Case 3. 176

9.2.5.Case 4. 178

9.3.Turbulent-flow solutions 178

9.4.Heat transfer in two-component systems 189

10.ESTIMATION METHODS FOR FORCED-CONVECTIVE BOILING:R.A.W.SHOCK 200

10.0.Chapter objectives 200

10.1.Convective correlations and relation to theories 200

10.2.Superposition of nucleate boiling in saturated and subtooled boiling 204

10.2.1.Introduction 204

10.2.2.Partial subcooled boiling 205

10.2.3.Saturated convective boiling 213

11.BOILING AND FLOW IN HORIZONTAL TUBES:D.BUTTERWORTH and J.M.ROBERTSON 223

11.0.Chapter objectives 223

11.1.Flow-pattern map for horizontal flow 223

11.2.Stratified flow 226

11.2.1.Useful geometric relationships 226

11.2.2.Laminar flow in both phases 227

11.2.3.Laminar liquid-turbulent gas 229

11.2.4.Turbulent flow of both phases 232

11.3.Stratified to slug transition. 232

11.4.Slug flow 234

11.5.Bubble flow 234

11.6.Annular flow 235

11.6.1.Illustration of horizontal annular flow 235

11.6.2.Suggested mechanisms for transporting liquid to the top of the tube 236

11.7.Heat-transfer coefficients 242

11.8.Burnout in horizontal tubes 243

11.8.1.Occurrence of burnout and its effect in practice 243

11.8.2.Observations of burnout in horizontal tubes 244

11.8.3.Tentative interpretations of burnout data 249

12.INTRODUCTION TO BURNOUT:G.L.SHIRES 252

12.0.Chapter objectives 252

12.1.A description of burnout 252

12.2.History 255

12.3.Factors influencing burnout 255

12.4.Evaluation of burnout 258

12.5.Basic burnout measurements in vertical straight tubes 260

12.5.1.Uniform heat flux 260

12.5.2.Straight tube,non-uniform heat flux 262

12.6.Modelling of burnout using Freon 264

12.7.Burnout in complex geometries 267

12.7.1.Burnout evaluation of reactor fuel 268

12.7.2.Burnout evaluation of boiler tubes 273

12.8.Summary 278

13.MECHANISMS OF BURNOUT:G.F.HEWITT 279

13.0.Chapter objectives 279

13.1.Definition of burnout 279

13.2.Evaluation of the burnout mechanism 280

13.3.The entrainment diagram and its applications 284

13.4.Calculation of onset of burnout in annular flow 291

14.PREDICTION OF BURNOUT:D.H.LEE 295

14.0.Chapter objectives 295

14.1.Trend of parameters 295

14.1.1.Inlet subcooling 296

14.1.2.Mass velocity 297

14.1.3.Pressure 298

14.1.4.Geometry 300

14.1.5.Local quality 301

14.2.Accuracy of burnout correlation 305

14.3.Correlating parameters 305

14.4.Burnout in tubes 306

14.5.Burnout in tubes at high pressure 309

14.6.Burnout in rectangular channels 309

14.7.Burnout in annular channels 311

14.8.Burnout in rod clusters 313

14.8.1.Whole channel model for correlating rod-cluster burnout 313

14.8.2.Subchannel models for correlating rod-cluster burnout 316

14.9.Secondary effects influencing prediction of burnout 319

14.9.1.Heat-flux profile 319

14.9.2.Direction of flow 320

14.10.Prediction of burnout margin 321

15.FOULING IN BOILING-WATER SYSTEMS:R.V.MACBETH 323

15.0.Chapter objectives 323

15.1.Introduction 323

15.2.Problems of experimenting with crud 324

15.3.The nature of crud deposits 326

15.4.The nature of boiling on a crudded surface 329

15.5.Model of wick boiling in a magnetite crud deposit 332

15.6.Effect of crud deposits on surface temperature 335

15.7.Effect of crud deposits on burnout 337

15.8.The effect of crud deposits on frictional pressure drop 339

16.INTRODUCTION TO HYDRODYNAMIC INSTABILITY:N.A.BAILEY 343

16.0.Chapter objectives 343

16.1.Introduction 343

16.2.The ‘Ledinegg’instability 344

16.3.Oscillations due to compressible volumes 348

16.4.Flow oscillations due to the growth of voids 349

16.5.Acoustic effects 351

16.6.Parallel-channel and natural-circulation loop instability 352

16.7.Situations where instabilities arise 353

16.8.The designer’s requirements 354

16.9.Experimental methods to determine the onset of parallel-channel or natural-circulation-loop instability 356

16.10.A review of some experimental investigations into the onset of hydrodynamic instability 359

16.10.1.Natural-circulation-loop instability 361

16.10.2.Parallel-channel instability 364

16.11.Prorlems arising in the application of models and tests to designs 371

16.12.The application of models and experimental tests to plant problems 372

17.OSCILLATORY INSTABILITY:R.POTTER 374

17.0.Chapter objectives 374

17.1.Introduction 374

17.2.General background to instabilities and noise amplification 375

17.3.Outline of feedback analysis 376

17.4.Example of an instability mode in boiling-water reactors 380

17.5.Hydrodynamic instability 382

17.6.Illustrative example 385

17.7.Circuit geometry 389

17.8.Other methods of analysis 391

17.9.Concluding remarks 393

18.INTRODUCTION TO CONDENSATION:D.BUTTERWORTH 394

18.0.Chapter objectives 394

18.1.Modes of condensation 394

18.2.Resistances to heat transfer during condensation 396

18.3.Homogeneous condensation 399

18.3.1.Droplet equilibrium 399

18.3.2.Nucleation 400

18.4.Dropwise condensation 403

18.5.Direct-contact condensation 405

18.5.1.Spray condensers 405

18.5.2.Pool condensers 409

18.6.Interfacial resistance 409

18.7.Gas-phase heat and mass transfer 413

18.7.1.Mass transfer 413

18.7.2.Effect of mass transfer on heat transfer 415

18.7.3.Condensing curves 418

18.7.4.Single vapour in the presence of incondensable gas 420

18.7.5.Multicomponent condensation 423

18.8.Effect of condensation on interfacial shear stress 425

19.FILMWISE CONDENSATION:D.BUTTERWORTB 426

19.0.Chapter objectives 426

19.1.Condensation on a vertical surface 426

19.1.1.Laminar film condensation-Nusselt solution 426

19.1.2.Extension of the Nusselt analysis to include subcooling and non-linear temperature profile 433

19.1.3.Inclusion of inertial effects 438

19.1.4.Effect of vapour superheat 440

19.1.5.Effect of waves 441

19.1.6.Effect of turbulence 443

19.2.Condensation on a horizontal tube 447

19.2.1.Outside a single tube 447

19.2.2.Condensation outside a bundle of tubes 448

19.2.3.Inside a horizontal tube 451

19.3.Condensation with high vapour shear 453

19.3.1.Different tube orientations and vapour flow directions 453

19.3.2.Horizontal tube with perpendicular vapour flow 454

19.3.3.Flow in a tube 455

19.4.Special surfaces for enhancing film condensation 459

20.LOSS-OF-COOLANT ACCIDENTS:I.BRITTAIN 463

20.0.Chapter objectives 463

20.1.Introduction 463

20.2.Fuel-pin behaviour 465

20.3.The loss-of-coolant accident 466

20.3.1.Blow-down phase 468

20.3.2.Core heat-up phase 468

20.3.3.Reflood phase 468

20.4.Critical-flow model 469

20.5.Hydrodynamics and heat transfer during blow-down 471

20.5.1.Fuel-pin heat transfer 471

20.5.2.Burnout correlations 472

20.5.3.Pump models 473

20.5.4.Steam drum behaviour 473

20.6.The s?agnation problem 474

20.7.Emergency core-cooling systems 476

20.8.Summary 477

REFERENCES 479

INDEX 511

相关图书
作者其它书籍
    返回顶部