INTRODUCTION 1
0.1.Major Areas of Combustion Application 1
0.2.Scientific Disciplines Comprising Combustion 6
0.3.Classifications of Fundamental Combustion Phenomena 7
0.4.Organization of the Text 10
0.5.Literature Sources 12
1.CHEMICAL THERMODYNAMICS 14
1.1.Practical Reactants and Stoichiometry 14
1.1.1.Practical Reactants 14
1.1.2.Stoichiometry 15
1.2.Chemical Equilibrium 16
1.2.1.First and Second Laws 16
1.2.2.Thermodynamic Functions 16
1.2.3.Criterion for Chemical Equilibrium 18
1.2.4.Phase Equilibrium 18
1.2.5.Equilibrium Constants 21
1.2.6.Equilibrium Constants in the Presence of Condensed Phases 22
1.2.7.Multiple Reactions 24
1.2.8.Element Conservation 24
1.2.9.Restricted Equilibrium 25
1.3.Equilibrium Composition Calculations 26
1.3.1.Equilibrium Composition of Hydrocarbon-Air Mixtures 26
1.3.2.The Major-Minor Species Model 28
1.3.3.Computer Solutions 30
1.4.Energy Conservation 31
1.4.1.Heats of Formation,Reaction,and Combustion 31
1.4.2.Estimation of Heat of Reaction from Bond Energies 34
1.4.3.Determination of Heat of Reaction from Kp(T) 35
1.4.4.Sensible Energies and Heat Capacities 35
1.4.5.Energy Conservation in Adiabatic Chemical Systems 37
1.4.6.Adiabatic Flame Temperature and Equilibrium Composition 37
PROBLEMS 49
2.CHEMICAL KINETICS 51
2.1.Phenomenological Law of Reaction Rates 52
2.1.1.The Law of Mass Action 52
2.1.2.Reversible Reactions 53
2.1.3.Multistep Reactions 54
2.1.4.Steady-State Approximation 54
2.1.5.Partial Equilibrium Approximation 55
2.1.6.Approximations by Global and Semiglobal Reactions 56
2.1.7.Reaction Order and Molecularity 57
2.2.Theories of Reaction Rates:Basic Concepts 58
2.2.1.The Arrhenius Law 58
2.2.2.The Activation Energy 59
2.2.3.Collision Theory of Reaction Rates 62
2.2.4.Transition State Theory of Reaction Rates 64
2.3.Theories of Reaction Rates:Unimolecular Reactions 67
2.3.1.Lindemann Theory 68
2.3.2.Rice-Ramsperger-Kassel(RRK)Theory 70
2.3.3.Representation of Unimolecular Reaction Rate Constants 71
2.3.4.Chemically Activated Reactions 72
2.4.Chain Reaction Mechanisms 74
2.4.1.Straight-Chain Reactions:The Hydrogen-Halogen System 74
2.4.2.Branched-Chain Reactions 76
2.4.3.Flame Inhibitors 79
2.5.Experimental and Computational Techniques 80
PROBLEMS 81
3.OXIDATION MECHANISMS OF FUELS 84
3.1.Practical Fuels 85
3.2.Oxidation of Hydrogen and Carbon Monoxide 89
3.2.1.Explosion Limits of Hydrogen-Oxygen Mixtures 89
3.2.2.Carbon Monoxide Oxidation 94
3.2.3.Initiation Reactions in Flames 94
3.3.Oxidation of Methane 95
3.3.1.General Considerations of Hydrocarbon Oxidation 95
3.3.2.Methane Autoignition 96
3.3.3.Methane Flames 99
3.4.Oxidation of C2 Hydrocarbons 100
3.5.Oxidation of Alcohols 102
3.6.High-Temperature Oxidation of Higher Aliphatic Fuels 103
3.6.1.The β-Scission Rule 104
3.6.2.Oxidation Mechanisms 106
3.7.Oxidation of Aromatics 109
3.8.Hydrocarbon Oxidation at Low to Intermediate Temperatures 112
3.9.Chemistry of Pollutant Formation 115
3.9.1.Oxides of Nitrogen 116
3.9.2.Soot Formation 119
3.10.Mechanism Development and Reduction 122
3.10.1.Postulated Semiglobal Mechanisms 122
3.10.2.Need for Comprehensiveness and Reduction 124
3.11.Systematic Reduction:The Hydrogen-Oxygen System 124
3.11.1.Reduction to Skeletal Mechanisms 125
3.11.2.Linearly Independent Representation 128
3.11.3.Reduction through QSS Assumption 129
3.12.Theories of Mechanism Reduction 132
3.12.1.Sensitivity Analysis 132
3.12.2.Theory of Directed Relation Graph 133
3.12.3.Theory of Computational Singular Perturbation 135
3.12.4.Mechanism Validation 137
PROBLEMS 139
4.TRANSPORT PHENOMENA 141
4.1.Phenomenological Derivation of Diffusion Coefficients 143
4.1.1.Derivation 143
4.1.2.Discussion on Diffusion Coefficients 145
4.1.3.Characteristic Diffusion Rates and Nondimensional Numbers 145
4.1.4.Second-Order Diffusion 146
4.2.Some Useful Results from Kinetic Theory of Gases 146
4.2.1.General Concepts 146
4.2.2.Collision Potentials and Integrals 148
4.2.3.Transport Coefficients 151
PROBLEMS 155
5.CONSERVATION EQUATIONS 157
5.1.Control Volume Derivation 157
5.1.1.Conservation of Total Mass 158
5.1.2.Conservation of Individual Species 158
5.1.3.Conservation of Momentum 160
5.1.4.Conservation of Energy 160
5.1.5.Conservation Relations across an Interface 162
5.2.Governing Equations 163
5.2.1.Conservation Equations 163
5.2.2.Constitutive Relations 163
5.2.3.Auxiliary Relations 166
5.2.4.Some Useful Approximations 167
5.3.A Simplified Diffusion-Controlled System 170
5.3.1.Assumptions 170
5.3.2.Derivation 170
5.4.Conserved Scalar Formulations 172
5.4.1.Coupling Function Formulation 173
5.4.2.Local Coupling Function Formulation 176
5.4.3.Near-Equidiffusion Formulation 177
5.4.4.Element Conservation Formulation 178
5.4.5.Mixture Fraction Formulation 179
5.4.6.Progress Variable Formulation 182
5.5.Reaction-Sheet Formulation 182
5.5.1.Jump Relations for Coupling Functions 182
5.5.2.Adiabatic Flame Temperature 185
5.6.Further Development of the Simplified Diffusion-Controlled System 187
5.6.1.Conservation Equations 187
5.6.2.Nondimensional Numbers 188
NOMENCLATURE 190
PROBLEMS 192
6.LAMINAR NONPREMIXED FLAMES 194
6.1.The One-Dimensional Chambered Flame 196
6.1.1.Coupling Function Formulation 196
6.1.2.Reaction-Sheet Formulation 199
6.1.3.Mixture Fraction Formulation 200
6.1.4.Element Conservation Formulation 201
6.2.The Burke-Schumann Flame 202
6.3.Condensed Fuel Vaporization and the Stefan Flow 208
6.4.Droplet Vaporization and Combustion 213
6.4.1.Phenomenology 213
6.4.2.d2-Law of Droplet Vaporization 214
6.4.3.d2-Law of Droplet Combustion 217
6.4.4.Experimental Results on Single-Component Droplet Combustion 222
6.5.The Counterflow Flame 224
PROBLEMS 230
7.LAMINAR PREMIXED FLAMES 234
7.1.Combustion Waves in Premixtures 235
7.1.1.Rankine-Hugoniot Relations 235
7.1.2.Detonation and Deflagration Waves 238
7.1.3.Chapman-Jouguet Waves 239
7.1.4.Preliminary Discussion of Detonation Waves 240
7.2.Phenomenological Description of the Standard Flame 241
7.2.1.Flame Structure 241
7.2.2.Laminar Burning Flux and Flame Thickness 244
7.3.Mathematical Formulation 246
7.3.1.Governing Equations 246
7.3.2.The Cold Boundary Difficulty 249
7.4.Approximate Analyses 250
7.4.1.Integral Analysis 250
7.4.2.Frank-Kamenetskii Solution 253
7.5.Asymptotic Analysis 255
7.5.1.Distinguished Limit 255
7.5.2.Asymptotic Solution 256
7.5.3.Dependence of Burning Flux on Flame Temperature 263
7.6.Determination of Laminar Flame Speeds 263
7.6.1.Bunsen Flame Method 265
7.6.2.Flat and One-Dimensional Flame Methods 266
7.6.3.Outwardly Propagating Spherical Flame Method 268
7.6.4.Stagnation Flame Method 271
7.6.5.Numerical Computation 273
7.6.6.Profile-Based Determination 274
7.7.Dependence of Laminar Burning Velocities 275
7.7.1.Dependence on Tad and Le 275
7.7.2.Dependence on Molecular Structure 277
7.7.3.Dependence on Pressure 278
7.7.4.Dependence on Freestream Temperature 282
7.7.5.Dependence on Transport Properties 283
7.8.Chemical Structure of Flames 284
7.8.1.Experimental Methods 285
7.8.2.Detailed Structure 286
7.8.3.Asymptotic Structure with Reduced Mechanisms 294
PROBLEMS 301
8.LIMIT PHENOMENA 303
8.1.Phenomenological Considerations of Ignition and Extinction 305
8.1.1.Quenching Distances and Minimum Ignition Energies 305
8.1.2.Adiabatic Thermal Explosion 307
8.1.3.Nonadiabatic Explosion and the Semenov Criterion 309
8.1.4.The Well-Stirred Reactor Analogy 311
8.1.5.The S-Curve Concept 313
8.2.Ignition by a Hot Surface 317
8.2.1.Asymptotic Analysis of the Reaction Zone 318
8.2.2.Ignition of a Confined Mixture by a Flat Plate 322
8.2.3.Ignition of an Unconfined Mixture by a Flat Plate 324
8.2.4.Nusselt Number Correlation 326
8.2.5.Convection-Free Formulation 326
8.3.Ignition of Hydrogen by Heated Air 327
8.3.1.Global Response to Strain Rate Variations 328
8.3.2.Second Ignition Limit 330
8.3.3.First and Third Ignition Limits 333
8.3.4.Decoupled Environment and Kinetic versus Thermal Feedback 335
8.3.5.Multiple Criticality and Staged Ignition 338
8.4.Premixed Flame Extinction through Volumetric Heat Loss 339
8.4.1.Phenomenological Derivation 341
8.4.2.Frank-Kamenetskii Solution 344
8.5.Flammability Limits 346
8.5.1.Empirical Limits 346
8.5.2.Fundamental Limits 348
8.6.Flame Stabilization and Blowoff 353
8.6.1.The Flat-Burner Flame 353
8.6.2.Stabilization of Premixed Flame at Burner Rim 358
8.6.3.Stabilization of Nonpremixed Flame at Burner Rim 361
8.6.4.Stabilization of Lifted Flames 362
PROBLEMS 364
9.ASYMPTOTIC STRUCTURE OF FLAMES 366
9.1.Structure of Premixed Flames 367
9.1.1.Structure Equation 368
9.1.2.Delta Function Closure and Jump Relations 370
9.1.3.Reduction to Canonical Form 373
9.2.Structure of Nonpremixed Flames:Classification 376
9.2.1.Classification of Flow Types 377
9.2.2.Classification of Flame Regimes 377
9.2.3.Parametric Boundaries of Flame Regimes 381
9.3.Structure of Nonpremixed Flames:Analysis 385
9.3.1.Nearly Frozen Regime 385
9.3.2.Partial Burning Regime 386
9.3.3.Premixed Flame Regime 387
9.3.4.Near-Equilibrium Regime 388
9.4.Mixture Fraction Formulation for Near-Equilibrium Regime 392
PROBLEMS 394
10.AERODYNAMICS OF LAMINAR FLAMES 396
10.1.General Concepts 396
10.2.Hydrodynamic Stretch 399
10.2.1.The G-Equation 399
10.2.2.Corner Formation in Landau Propagation 400
10.2.3.Burning Rate Increase through Flame Wrinkling 403
10.2.4.The Stretch Rate 405
10.3.Flame Stretch:Phenomenology 410
10.3.1.Effects of Flow Straining:The Stagnation Flame 410
10.3.2.Effects of Flame Curvature:The Bunsen Flame 413
10.3.3.Effects of Flame Motion:The Unsteady Spherical Flame 414
10.3.4.Effects of Heat Loss 415
10.4.Flame Stretch:Analyses 416
10.4.1.Effects of Flame Stretch 416
10.4.2.Effects of Pure Curvature 422
10.4.3.Combined Solution 424
10.4.4.Asymptotic Analysis of the Counterflow Flame 424
10.5.Experimental and Computational Results 428
10.5.1.Equidiffusive Flames 428
10.5.2.Nonequidiffusive Flames 429
10.6.Further Implications of Stretched Flame Phenomena 439
10.6.1.Determination of Laminar Flame Parameters 439
10.6.2.Dual Extinction States and Extended Flammability Limits 442
10.6.3.Other Phenomena 446
10.7.Simultaneous Consideration of Hydrodynamic and Flame Stretch 448
10.7.1.Curvature-Induced Corner Broadening 448
10.7.2.Inversion and Tip Opening of Bunsen Flames 450
10.8.Unsteady Dynamics 452
10.9.Flamefront Instabilities 456
10.9.1.Mechanisms of Cellular Instabilities 456
10.9.2.Analysis of Cellular Instabilities 461
10.9.3.Mechanisms of Pulsating Instabilities 466
10.9.4.Effects of Heat Loss and Aerodynamic Straining 469
PROBLEMS 471
11.COMBUSTION IN TURBULENT FLOWS 474
11.1.General Concepts 474
11.1.1.Origin and Structure 474
11.1.2.Probabilistic Description 477
11.1.3.Turbulence Scales 480
11.2.Simulation and Modeling 483
11.2.1.Direct Numerical Simulation 485
11.2.2.Reynolds-Averaged Navier-Stokes Models 486
11.2.3.Large Eddy Simulation 491
11.2.4.Probability Density Functions 493
11.2.5.Closure of the Reaction Rate Term 494
11.3.Premixed Turbulent Combustion 496
11.3.1.Regimes of Combustion Modes 496
11.3.2.Turbulent Burning Velocities 500
11.3.3.Flamelet Modeling 506
11.4.Nonpremixed Turbulent Combustion 509
11.4.1.Regimes of Combustion Modes 509
11.4.2.Mixture Fraction Modeling 511
PROBLEMS 514
12.COMBUSTION IN BOUNDARY-LAYER FLOWS 516
12.1.Considerations of Steady Two-Dimensional Boundary-Layer Flows 518
12.1.1.Governing Equations 518
12.1.2.Transformation to Boundary-Layer Variables 521
12.1.3.Discussion on Similarity 523
12.2.Nonpremixed Burning of an Ablating Surface 526
12.3.Ignition of a Premixed Combustible 529
12.3.1.Ignition at the Stagnation Point 529
12.3.2.Ignition along a Flat Plate 530
12.3.3.Ignition in the Mixing Layer 533
12.3.4.Flame Stabilization and Blowoff in High-Speed Flows 536
12.4.Jet Flows 537
12.4.1.Similarity Solution 538
12.4.2.Height of Nonpremixed Jet Flames 540
12.4.3.Stabilization and Blowout of Lifted Flames 542
12.5.Supersonic Boundary-Layer Flows 548
12.5.1.Nonpremixed Burning of an Ablating Surface 549
12.5.2.Ignition along a Flat Plate 550
12.6.Natural Convection Boundary-Layer Flows 551
PROBLEMS 556
13.COMBUSTION IN TWO-PHASE FLOWS 559
13.1.General Considerations of Droplet Combustion 560
13.1.1.Phenomenology 560
13.1.2.Experimental Considerations 563
13.2.Single-Component Droplet Combustion 565
13.2.1.Droplet Heating 565
13.2.2.Fuel Vapor Accumulation 569
13.2.3.Variable Property Effects 572
13.2.4.Gas-Phase Transient Diffusion and High-Pressure Combustion 573
13.2.5.Convection Effects and Droplet Dynamics 575
13.2.6.Droplet Interaction 578
13.2.7.Dynamics of Droplet Collision 581
13.2.8.Ignition and Extinction Criteria 584
13.3.Multicomponent Droplet Combustion 585
13.3.1.Miscible Mixtures 586
13.3.2.Microexplosion Phenomenon 595
13.3.3.Emulsions and Slurries 597
13.3.4.Alcohols and Reactive Liquid Propellants 599
13.4.Carbon Particle Combustion 602
13.4.1.Phenomenology 602
13.4.2.Global Kinetics of Carbon Oxidation 603
13.4.3.Analysis 604
13.4.4.Limiting Solutions 607
13.5.Metal Particle Combustion 611
13.6.Phenomenology of Spray Combustion 613
13.6.1.One-Dimensional,Planar,Spray Flames 613
13.6.2.Spray Jet Flames 614
13.6.3.Cloud and Dense Spray Combustion 615
13.7.Formulation of Spray Combustion 617
13.7.1.Spray Statistics 617
13.7.2.Conservation Equations 620
13.8.Adiabatic Spray Vaporization 621
13.9.Heterogeneous Laminar Flames 625
13.9.1.Gas-Phase Flames 626
13.9.2.Condensed-Phase Flames 629
PROBLEMS 631
14.COMBUSTION IN SUPERSONIC FLOWS 634
14.1.Frozen and Equilibrium Flows 635
14.1.1.Governing Equations for Nondiffusive Flows 635
14.1.2.Entropy Production 636
14.1.3.Speed of Sound 636
14.1.4.Acoustic Equations 638
14.2.Dynamics of Weakly Perturbed Flows 640
14.2.1.One-Dimensional Propagation of Acoustic Waves 640
14.2.2.Uniform Flow over Slender Bodies 643
14.3.Steady,Quasi-One-Dimensional Flows 645
14.3.1.Nonlinear Flows 645
14.3.2.Linearized Nozzle Flows 646
14.4.Method of Characteristics 647
14.4.1.General Procedure for Two Independent Variables 648
14.4.2.Unsteady,One-Dimensional,Frozen,Isentropic Flows 650
14.4.3.Steady Two-Dimensional Flows 651
14.5.Steady One-Dimensional Detonations 654
14.5.1.Chapman-Jouguet Detonations 654
14.5.2.Overdriven Detonations 655
14.5.3.Taylor Expansion Waves 656
14.5.4.ZND Structure of Detonation Waves 659
14.5.5.Eigenvalue Structure of Quasi-One-Dimensional Detonations 662
14.6.Unsteady Three-Dimensional Detonations 664
14.6.1.Pulsating Instability of the ZND Structure 665
14.6.2.Triple-Shock Structure 667
14.6.3.Triple-Shock Interactions 671
14.6.4.The Complex Structure 673
14.7.Propagation of Strong Blast Waves 674
14.8.Direct Detonation Initiation 678
14.8.1.The Zel’dovich Criterion 678
14.8.2.Curvature-Induced Quenching Limit 679
14.8.3.Curvature-Affected Initiation Limit 684
14.9.Indirect Detonation Initiation 685
14.9.1.Synchronized Initiation 685
14.9.2.Deflagration-to-Detonation Transition 686
PROBLEMS 687
References 693
Author Index 711
Subject Index 716