当前位置:首页 > 外文
COMBUSTION PHYSICS
COMBUSTION PHYSICS

COMBUSTION PHYSICSPDF电子书下载

外文

  • 电子书积分:20 积分如何计算积分?
  • 作 者:
  • 出 版 社:CAMBRIDGE UNIVERSITY PRESS
  • 出版年份:2006
  • ISBN:0521870526
  • 页数:722 页
图书介绍:
《COMBUSTION PHYSICS》目录
标签:

INTRODUCTION 1

0.1.Major Areas of Combustion Application 1

0.2.Scientific Disciplines Comprising Combustion 6

0.3.Classifications of Fundamental Combustion Phenomena 7

0.4.Organization of the Text 10

0.5.Literature Sources 12

1.CHEMICAL THERMODYNAMICS 14

1.1.Practical Reactants and Stoichiometry 14

1.1.1.Practical Reactants 14

1.1.2.Stoichiometry 15

1.2.Chemical Equilibrium 16

1.2.1.First and Second Laws 16

1.2.2.Thermodynamic Functions 16

1.2.3.Criterion for Chemical Equilibrium 18

1.2.4.Phase Equilibrium 18

1.2.5.Equilibrium Constants 21

1.2.6.Equilibrium Constants in the Presence of Condensed Phases 22

1.2.7.Multiple Reactions 24

1.2.8.Element Conservation 24

1.2.9.Restricted Equilibrium 25

1.3.Equilibrium Composition Calculations 26

1.3.1.Equilibrium Composition of Hydrocarbon-Air Mixtures 26

1.3.2.The Major-Minor Species Model 28

1.3.3.Computer Solutions 30

1.4.Energy Conservation 31

1.4.1.Heats of Formation,Reaction,and Combustion 31

1.4.2.Estimation of Heat of Reaction from Bond Energies 34

1.4.3.Determination of Heat of Reaction from Kp(T) 35

1.4.4.Sensible Energies and Heat Capacities 35

1.4.5.Energy Conservation in Adiabatic Chemical Systems 37

1.4.6.Adiabatic Flame Temperature and Equilibrium Composition 37

PROBLEMS 49

2.CHEMICAL KINETICS 51

2.1.Phenomenological Law of Reaction Rates 52

2.1.1.The Law of Mass Action 52

2.1.2.Reversible Reactions 53

2.1.3.Multistep Reactions 54

2.1.4.Steady-State Approximation 54

2.1.5.Partial Equilibrium Approximation 55

2.1.6.Approximations by Global and Semiglobal Reactions 56

2.1.7.Reaction Order and Molecularity 57

2.2.Theories of Reaction Rates:Basic Concepts 58

2.2.1.The Arrhenius Law 58

2.2.2.The Activation Energy 59

2.2.3.Collision Theory of Reaction Rates 62

2.2.4.Transition State Theory of Reaction Rates 64

2.3.Theories of Reaction Rates:Unimolecular Reactions 67

2.3.1.Lindemann Theory 68

2.3.2.Rice-Ramsperger-Kassel(RRK)Theory 70

2.3.3.Representation of Unimolecular Reaction Rate Constants 71

2.3.4.Chemically Activated Reactions 72

2.4.Chain Reaction Mechanisms 74

2.4.1.Straight-Chain Reactions:The Hydrogen-Halogen System 74

2.4.2.Branched-Chain Reactions 76

2.4.3.Flame Inhibitors 79

2.5.Experimental and Computational Techniques 80

PROBLEMS 81

3.OXIDATION MECHANISMS OF FUELS 84

3.1.Practical Fuels 85

3.2.Oxidation of Hydrogen and Carbon Monoxide 89

3.2.1.Explosion Limits of Hydrogen-Oxygen Mixtures 89

3.2.2.Carbon Monoxide Oxidation 94

3.2.3.Initiation Reactions in Flames 94

3.3.Oxidation of Methane 95

3.3.1.General Considerations of Hydrocarbon Oxidation 95

3.3.2.Methane Autoignition 96

3.3.3.Methane Flames 99

3.4.Oxidation of C2 Hydrocarbons 100

3.5.Oxidation of Alcohols 102

3.6.High-Temperature Oxidation of Higher Aliphatic Fuels 103

3.6.1.The β-Scission Rule 104

3.6.2.Oxidation Mechanisms 106

3.7.Oxidation of Aromatics 109

3.8.Hydrocarbon Oxidation at Low to Intermediate Temperatures 112

3.9.Chemistry of Pollutant Formation 115

3.9.1.Oxides of Nitrogen 116

3.9.2.Soot Formation 119

3.10.Mechanism Development and Reduction 122

3.10.1.Postulated Semiglobal Mechanisms 122

3.10.2.Need for Comprehensiveness and Reduction 124

3.11.Systematic Reduction:The Hydrogen-Oxygen System 124

3.11.1.Reduction to Skeletal Mechanisms 125

3.11.2.Linearly Independent Representation 128

3.11.3.Reduction through QSS Assumption 129

3.12.Theories of Mechanism Reduction 132

3.12.1.Sensitivity Analysis 132

3.12.2.Theory of Directed Relation Graph 133

3.12.3.Theory of Computational Singular Perturbation 135

3.12.4.Mechanism Validation 137

PROBLEMS 139

4.TRANSPORT PHENOMENA 141

4.1.Phenomenological Derivation of Diffusion Coefficients 143

4.1.1.Derivation 143

4.1.2.Discussion on Diffusion Coefficients 145

4.1.3.Characteristic Diffusion Rates and Nondimensional Numbers 145

4.1.4.Second-Order Diffusion 146

4.2.Some Useful Results from Kinetic Theory of Gases 146

4.2.1.General Concepts 146

4.2.2.Collision Potentials and Integrals 148

4.2.3.Transport Coefficients 151

PROBLEMS 155

5.CONSERVATION EQUATIONS 157

5.1.Control Volume Derivation 157

5.1.1.Conservation of Total Mass 158

5.1.2.Conservation of Individual Species 158

5.1.3.Conservation of Momentum 160

5.1.4.Conservation of Energy 160

5.1.5.Conservation Relations across an Interface 162

5.2.Governing Equations 163

5.2.1.Conservation Equations 163

5.2.2.Constitutive Relations 163

5.2.3.Auxiliary Relations 166

5.2.4.Some Useful Approximations 167

5.3.A Simplified Diffusion-Controlled System 170

5.3.1.Assumptions 170

5.3.2.Derivation 170

5.4.Conserved Scalar Formulations 172

5.4.1.Coupling Function Formulation 173

5.4.2.Local Coupling Function Formulation 176

5.4.3.Near-Equidiffusion Formulation 177

5.4.4.Element Conservation Formulation 178

5.4.5.Mixture Fraction Formulation 179

5.4.6.Progress Variable Formulation 182

5.5.Reaction-Sheet Formulation 182

5.5.1.Jump Relations for Coupling Functions 182

5.5.2.Adiabatic Flame Temperature 185

5.6.Further Development of the Simplified Diffusion-Controlled System 187

5.6.1.Conservation Equations 187

5.6.2.Nondimensional Numbers 188

NOMENCLATURE 190

PROBLEMS 192

6.LAMINAR NONPREMIXED FLAMES 194

6.1.The One-Dimensional Chambered Flame 196

6.1.1.Coupling Function Formulation 196

6.1.2.Reaction-Sheet Formulation 199

6.1.3.Mixture Fraction Formulation 200

6.1.4.Element Conservation Formulation 201

6.2.The Burke-Schumann Flame 202

6.3.Condensed Fuel Vaporization and the Stefan Flow 208

6.4.Droplet Vaporization and Combustion 213

6.4.1.Phenomenology 213

6.4.2.d2-Law of Droplet Vaporization 214

6.4.3.d2-Law of Droplet Combustion 217

6.4.4.Experimental Results on Single-Component Droplet Combustion 222

6.5.The Counterflow Flame 224

PROBLEMS 230

7.LAMINAR PREMIXED FLAMES 234

7.1.Combustion Waves in Premixtures 235

7.1.1.Rankine-Hugoniot Relations 235

7.1.2.Detonation and Deflagration Waves 238

7.1.3.Chapman-Jouguet Waves 239

7.1.4.Preliminary Discussion of Detonation Waves 240

7.2.Phenomenological Description of the Standard Flame 241

7.2.1.Flame Structure 241

7.2.2.Laminar Burning Flux and Flame Thickness 244

7.3.Mathematical Formulation 246

7.3.1.Governing Equations 246

7.3.2.The Cold Boundary Difficulty 249

7.4.Approximate Analyses 250

7.4.1.Integral Analysis 250

7.4.2.Frank-Kamenetskii Solution 253

7.5.Asymptotic Analysis 255

7.5.1.Distinguished Limit 255

7.5.2.Asymptotic Solution 256

7.5.3.Dependence of Burning Flux on Flame Temperature 263

7.6.Determination of Laminar Flame Speeds 263

7.6.1.Bunsen Flame Method 265

7.6.2.Flat and One-Dimensional Flame Methods 266

7.6.3.Outwardly Propagating Spherical Flame Method 268

7.6.4.Stagnation Flame Method 271

7.6.5.Numerical Computation 273

7.6.6.Profile-Based Determination 274

7.7.Dependence of Laminar Burning Velocities 275

7.7.1.Dependence on Tad and Le 275

7.7.2.Dependence on Molecular Structure 277

7.7.3.Dependence on Pressure 278

7.7.4.Dependence on Freestream Temperature 282

7.7.5.Dependence on Transport Properties 283

7.8.Chemical Structure of Flames 284

7.8.1.Experimental Methods 285

7.8.2.Detailed Structure 286

7.8.3.Asymptotic Structure with Reduced Mechanisms 294

PROBLEMS 301

8.LIMIT PHENOMENA 303

8.1.Phenomenological Considerations of Ignition and Extinction 305

8.1.1.Quenching Distances and Minimum Ignition Energies 305

8.1.2.Adiabatic Thermal Explosion 307

8.1.3.Nonadiabatic Explosion and the Semenov Criterion 309

8.1.4.The Well-Stirred Reactor Analogy 311

8.1.5.The S-Curve Concept 313

8.2.Ignition by a Hot Surface 317

8.2.1.Asymptotic Analysis of the Reaction Zone 318

8.2.2.Ignition of a Confined Mixture by a Flat Plate 322

8.2.3.Ignition of an Unconfined Mixture by a Flat Plate 324

8.2.4.Nusselt Number Correlation 326

8.2.5.Convection-Free Formulation 326

8.3.Ignition of Hydrogen by Heated Air 327

8.3.1.Global Response to Strain Rate Variations 328

8.3.2.Second Ignition Limit 330

8.3.3.First and Third Ignition Limits 333

8.3.4.Decoupled Environment and Kinetic versus Thermal Feedback 335

8.3.5.Multiple Criticality and Staged Ignition 338

8.4.Premixed Flame Extinction through Volumetric Heat Loss 339

8.4.1.Phenomenological Derivation 341

8.4.2.Frank-Kamenetskii Solution 344

8.5.Flammability Limits 346

8.5.1.Empirical Limits 346

8.5.2.Fundamental Limits 348

8.6.Flame Stabilization and Blowoff 353

8.6.1.The Flat-Burner Flame 353

8.6.2.Stabilization of Premixed Flame at Burner Rim 358

8.6.3.Stabilization of Nonpremixed Flame at Burner Rim 361

8.6.4.Stabilization of Lifted Flames 362

PROBLEMS 364

9.ASYMPTOTIC STRUCTURE OF FLAMES 366

9.1.Structure of Premixed Flames 367

9.1.1.Structure Equation 368

9.1.2.Delta Function Closure and Jump Relations 370

9.1.3.Reduction to Canonical Form 373

9.2.Structure of Nonpremixed Flames:Classification 376

9.2.1.Classification of Flow Types 377

9.2.2.Classification of Flame Regimes 377

9.2.3.Parametric Boundaries of Flame Regimes 381

9.3.Structure of Nonpremixed Flames:Analysis 385

9.3.1.Nearly Frozen Regime 385

9.3.2.Partial Burning Regime 386

9.3.3.Premixed Flame Regime 387

9.3.4.Near-Equilibrium Regime 388

9.4.Mixture Fraction Formulation for Near-Equilibrium Regime 392

PROBLEMS 394

10.AERODYNAMICS OF LAMINAR FLAMES 396

10.1.General Concepts 396

10.2.Hydrodynamic Stretch 399

10.2.1.The G-Equation 399

10.2.2.Corner Formation in Landau Propagation 400

10.2.3.Burning Rate Increase through Flame Wrinkling 403

10.2.4.The Stretch Rate 405

10.3.Flame Stretch:Phenomenology 410

10.3.1.Effects of Flow Straining:The Stagnation Flame 410

10.3.2.Effects of Flame Curvature:The Bunsen Flame 413

10.3.3.Effects of Flame Motion:The Unsteady Spherical Flame 414

10.3.4.Effects of Heat Loss 415

10.4.Flame Stretch:Analyses 416

10.4.1.Effects of Flame Stretch 416

10.4.2.Effects of Pure Curvature 422

10.4.3.Combined Solution 424

10.4.4.Asymptotic Analysis of the Counterflow Flame 424

10.5.Experimental and Computational Results 428

10.5.1.Equidiffusive Flames 428

10.5.2.Nonequidiffusive Flames 429

10.6.Further Implications of Stretched Flame Phenomena 439

10.6.1.Determination of Laminar Flame Parameters 439

10.6.2.Dual Extinction States and Extended Flammability Limits 442

10.6.3.Other Phenomena 446

10.7.Simultaneous Consideration of Hydrodynamic and Flame Stretch 448

10.7.1.Curvature-Induced Corner Broadening 448

10.7.2.Inversion and Tip Opening of Bunsen Flames 450

10.8.Unsteady Dynamics 452

10.9.Flamefront Instabilities 456

10.9.1.Mechanisms of Cellular Instabilities 456

10.9.2.Analysis of Cellular Instabilities 461

10.9.3.Mechanisms of Pulsating Instabilities 466

10.9.4.Effects of Heat Loss and Aerodynamic Straining 469

PROBLEMS 471

11.COMBUSTION IN TURBULENT FLOWS 474

11.1.General Concepts 474

11.1.1.Origin and Structure 474

11.1.2.Probabilistic Description 477

11.1.3.Turbulence Scales 480

11.2.Simulation and Modeling 483

11.2.1.Direct Numerical Simulation 485

11.2.2.Reynolds-Averaged Navier-Stokes Models 486

11.2.3.Large Eddy Simulation 491

11.2.4.Probability Density Functions 493

11.2.5.Closure of the Reaction Rate Term 494

11.3.Premixed Turbulent Combustion 496

11.3.1.Regimes of Combustion Modes 496

11.3.2.Turbulent Burning Velocities 500

11.3.3.Flamelet Modeling 506

11.4.Nonpremixed Turbulent Combustion 509

11.4.1.Regimes of Combustion Modes 509

11.4.2.Mixture Fraction Modeling 511

PROBLEMS 514

12.COMBUSTION IN BOUNDARY-LAYER FLOWS 516

12.1.Considerations of Steady Two-Dimensional Boundary-Layer Flows 518

12.1.1.Governing Equations 518

12.1.2.Transformation to Boundary-Layer Variables 521

12.1.3.Discussion on Similarity 523

12.2.Nonpremixed Burning of an Ablating Surface 526

12.3.Ignition of a Premixed Combustible 529

12.3.1.Ignition at the Stagnation Point 529

12.3.2.Ignition along a Flat Plate 530

12.3.3.Ignition in the Mixing Layer 533

12.3.4.Flame Stabilization and Blowoff in High-Speed Flows 536

12.4.Jet Flows 537

12.4.1.Similarity Solution 538

12.4.2.Height of Nonpremixed Jet Flames 540

12.4.3.Stabilization and Blowout of Lifted Flames 542

12.5.Supersonic Boundary-Layer Flows 548

12.5.1.Nonpremixed Burning of an Ablating Surface 549

12.5.2.Ignition along a Flat Plate 550

12.6.Natural Convection Boundary-Layer Flows 551

PROBLEMS 556

13.COMBUSTION IN TWO-PHASE FLOWS 559

13.1.General Considerations of Droplet Combustion 560

13.1.1.Phenomenology 560

13.1.2.Experimental Considerations 563

13.2.Single-Component Droplet Combustion 565

13.2.1.Droplet Heating 565

13.2.2.Fuel Vapor Accumulation 569

13.2.3.Variable Property Effects 572

13.2.4.Gas-Phase Transient Diffusion and High-Pressure Combustion 573

13.2.5.Convection Effects and Droplet Dynamics 575

13.2.6.Droplet Interaction 578

13.2.7.Dynamics of Droplet Collision 581

13.2.8.Ignition and Extinction Criteria 584

13.3.Multicomponent Droplet Combustion 585

13.3.1.Miscible Mixtures 586

13.3.2.Microexplosion Phenomenon 595

13.3.3.Emulsions and Slurries 597

13.3.4.Alcohols and Reactive Liquid Propellants 599

13.4.Carbon Particle Combustion 602

13.4.1.Phenomenology 602

13.4.2.Global Kinetics of Carbon Oxidation 603

13.4.3.Analysis 604

13.4.4.Limiting Solutions 607

13.5.Metal Particle Combustion 611

13.6.Phenomenology of Spray Combustion 613

13.6.1.One-Dimensional,Planar,Spray Flames 613

13.6.2.Spray Jet Flames 614

13.6.3.Cloud and Dense Spray Combustion 615

13.7.Formulation of Spray Combustion 617

13.7.1.Spray Statistics 617

13.7.2.Conservation Equations 620

13.8.Adiabatic Spray Vaporization 621

13.9.Heterogeneous Laminar Flames 625

13.9.1.Gas-Phase Flames 626

13.9.2.Condensed-Phase Flames 629

PROBLEMS 631

14.COMBUSTION IN SUPERSONIC FLOWS 634

14.1.Frozen and Equilibrium Flows 635

14.1.1.Governing Equations for Nondiffusive Flows 635

14.1.2.Entropy Production 636

14.1.3.Speed of Sound 636

14.1.4.Acoustic Equations 638

14.2.Dynamics of Weakly Perturbed Flows 640

14.2.1.One-Dimensional Propagation of Acoustic Waves 640

14.2.2.Uniform Flow over Slender Bodies 643

14.3.Steady,Quasi-One-Dimensional Flows 645

14.3.1.Nonlinear Flows 645

14.3.2.Linearized Nozzle Flows 646

14.4.Method of Characteristics 647

14.4.1.General Procedure for Two Independent Variables 648

14.4.2.Unsteady,One-Dimensional,Frozen,Isentropic Flows 650

14.4.3.Steady Two-Dimensional Flows 651

14.5.Steady One-Dimensional Detonations 654

14.5.1.Chapman-Jouguet Detonations 654

14.5.2.Overdriven Detonations 655

14.5.3.Taylor Expansion Waves 656

14.5.4.ZND Structure of Detonation Waves 659

14.5.5.Eigenvalue Structure of Quasi-One-Dimensional Detonations 662

14.6.Unsteady Three-Dimensional Detonations 664

14.6.1.Pulsating Instability of the ZND Structure 665

14.6.2.Triple-Shock Structure 667

14.6.3.Triple-Shock Interactions 671

14.6.4.The Complex Structure 673

14.7.Propagation of Strong Blast Waves 674

14.8.Direct Detonation Initiation 678

14.8.1.The Zel’dovich Criterion 678

14.8.2.Curvature-Induced Quenching Limit 679

14.8.3.Curvature-Affected Initiation Limit 684

14.9.Indirect Detonation Initiation 685

14.9.1.Synchronized Initiation 685

14.9.2.Deflagration-to-Detonation Transition 686

PROBLEMS 687

References 693

Author Index 711

Subject Index 716

相关图书
作者其它书籍
    返回顶部