1 Equilibrium Electrochemistry and the Nernst Equation 1
1.1 Cell Thermodynamics 1
1.2 The Nernst Equation 2
1.3 The Nernst Equation 3
1.4 The Nernst Equation 5
1.5 Theory of the Nernst Equation 5
1.6 The Debye-Hückel Limiting Law 7
1.7 Cell Reaction and Equilibrium Constant 10
1.8 Cell Reaction and Equilibrium Constant 11
1.9 Cell Reaction and Solubility Product 12
1.10 Cell Reaction and pKa 13
1.11 Cell Thermodynamics and Temperature 14
1.12 Cell Thermodynamics and Temperature 15
1.13 Cell Energetics 16
1.14 Cell EMF and pH 17
1.15 Cell Reaction and Equilibria 18
1.16 Cell Reaction and Kw 19
1.17 Cell Reaction and Disproportionation 20
1.18 Fuel Cell Energetics 21
1.19 Fuel Cell Energetics 22
1.20 The Influence of Temperature on the Self-Ionisation of Water 23
1.21 Cell Reaction and Complexation 24
1.22 Reference Electrodes 26
1.23 Formal Potentials 27
1.24 Formal Potentials 28
1.25 Standard Potentials and pH 29
1.26 Standard Potentials and pH 30
1.27 Standard Potentials and pH 31
2 Electrode Kinetics 35
2.1 Faraday's Laws of Electrolysis 35
2.2 Electrodeposition 36
2.3 Tafel Analysis:One-Electron Processes 39
2.4 Tafel Analysis:Electrochemically Reversible Processes 39
2.5 Tafel Analysis:Mass Transport Correction 41
2.6 Tafel Analysis:Two-Electron Processes 42
2.7 The Butler-Volmer Equation and the Nernst Equation 45
2.8 The Hydrogen Evolution Reaction 46
2.9 Requirement for Supporting Electrolyte 47
2.10 Frumkin Corrections 49
2.11 Marcus Theory and Standard Electrochemical Rate Constants 51
2.12 Marcus Theory and Butler-Volmer Kinetics 52
2.13 Marcus Theory and the Role of Solvent 54
2.14 Marcus Theory and the Inverted Region 55
3 Diffusion 57
3.1 Fick's Laws of Diffusion 57
3.2 Fick's Laws of Diffusion 58
3.3 Diffusion Distances 59
3.4 The Cottrell Equation 60
3.5 Derivation of the Cottrell Equation 62
3.6 Diffusion and Root-Mean-Square Displacement 66
4 Cyclic Voltammetry at Macroelectrodes 67
4.1 Cyclic Voltammetry:Electrochemically Reversible Voltammetry 67
4.2 Cyclic Voltammetry:Electrochemically Irreversible Voltammetry 69
4.3 Reversible vs Irreversible Voltammetry 71
4.4 Voltammetric Diagnostics 72
4.5 Voltammetry and Scan Rate Effects 73
4.6 Ferrocene Voltammetry 75
4.7 Ferrocene Voltammetry 75
4.8 Features of Cyclic Voltammograms 76
4.9 Derivation of the Randles-?ev?ík Equation 77
4.10 Reversible Two-Electron Transfer 81
4.11 The Influence of pH on Cyclic Voltammetry 82
4.12 The Scheme of Squares 84
4.13 The EE-Comproportionation Mechanism 86
5 Voltammetry at Microelectrodes 91
5.1 Steady-State Concentration Profile in Spherical Space 91
5.2 Current Transients at a Spherical Electrode 93
5.3 Linear vs Convergent Diffusion 94
5.4 Dissolution of Microparticles 95
5.5 Steady-State Limiting Current at a Microdisc 97
5.6 Microdisc vs Planar Electrode 98
5.7 The Shoup-Szabo Equation 98
5.8 Steady-State Electrolysis 100
5.9 Effect of Unequal Diffusion Coefficients 101
5.10 Temperature Effects on Steady-State Currents 101
5.11 ECE Mechanism at a Microdisc Electrode 103
5.12 EC' Mechanism at a Microdisc Electrode 105
5.13 Size Effects on Half-Wave Potentials 106
5.14 Extracting Parameters from Microdisc Chronoamperometry 107
5.15 Extracting Parameters from Microdisc Chronoamperometry 109
6 Voltammetry at Heterogeneous Surfaces 111
6.1 Graphitic Electrodes 111
6.2 Carbon Nanotubes and Their Reactivity 113
6.3 Highly Ordered Pyrolytic Graphite and the Influence of Defects 114
6.4 Advantages of Arrays 115
6.5 Diffusional'Cases' 116
6.6 Geometry of a Regular Array 117
6.7 Analysis of Diffusion to Electrode Arrays 119
6.8 Partially Blocked Electrodes 121
7 Cyclic Voltammetry:Coupled Homogeneous Kinetics and Adsorption 123
7.1 EE Mechanism and Comproportionation 123
7.2 EE mechanism:The Reduction of [(η6-C6Me6)2Ru][BF4]2 124
7.3 EC2 Mechanism:The Reduction of the 2,6-Diphenyl Pyrylium Cation 126
7.4 Analysis of an Unknown Reaction Mechanism 128
7.5 EC Mechanism:Diethyl Maleate 130
7.6 ECE Mechanism:p-chlorobenzonitrile 133
7.7 ECE vs DISP 1:Voltammetry of Fluorescein 135
7.8 Reduction of Anthracene in DMF 137
7.9 CE Mechanism 140
7.10 EC' Mechanism 142
7.11 EC' Mechanism:Cysteine and Ferrocyanide 143
7.12 EC' Mechanism:Oxygen and Anthraquinone 145
7.13 Chronoamperometry of Adsorbed Species 146
7.14 Voltammetry of an Ideal Adsorbed Species 147
7.15 Non-Ideal Adsorbed Species 150
7.16 Irreversible Electron Transfer and Adsorbed Redox Species 153
7.17 Voltammetry of Ferrocyanide/Ferricyanide 157
8 Hydrodynamic Electrodes 159
8.1 Channel Electrodes and Limiting Currents 159
8.2 Channel Electrodes and Reynolds Number 160
8.3 Flow to Rotating Discs and in Channels 161
8.4 Channel Electrodes and ECE Processes 162
8.5 Channel Electrodes and ECE Processes 164
8.6 Channel Electrodes and Entry Length 167
8.7 Channel Electrodes and Diffusion Coefficients 167
8.8 Channel Electrodes and Current Distribution 169
8.9 Wall-Jet Electrodes and Current Distribution 170
8.10 Wall-Jet Electrodes and Diffusion Coefficients 170
8.11 Wall-Jet Electrode and a DISP 1 Process 172
8.12 Wall-Jet Electrode and EC Processes 173
8.13 Sono-Voltammetry 177
8.14 Rotating Disc Electrodes and Reynolds Number 178
8.15 Wall-Jet and Rotating Disc Electrodes 178
8.16 Rotating Disc Electrodes and ECE Processes 180
9 Voltammetry for Electroanalysis 183
9.1 Electrochemical Sizing of Gold Surfaces 183
9.2 Differential Pulse Voltammetry 185
9.3 Square-Wave Voltammetry 186
9.4 Square-Wave Voltammetry and Dissolved Oxygen 187
9.5 Stripping Voltammetry 188
9.6 Analysis of DNA 189
9.7 The Clark Cell 191
9.8 Calibration and Limits of Detection 193
9.9 Enzyme Electrodes 195
9.10 Glucose Biosensors 196
9.11 Detection of Vitamin B12 198
9.12 The Anodic Stripping Voltammetry of Industrial Effluent 200
9.13 Adsorptive Stripping Voltammetry at Carbon Nanotube Modified Electrodes 202
9.14 Surface Modified Electrodes 205
9.15 Electron Transfer Rates at Carbon Electrodes 208
10 Voltammetry in Weakly Supported Media:Migration and Other Effects 211
10.1 Coulomb's Law 211
10.2 The Nernst-Planck Equation 212
10.3 Migration and the Electric Field 215
10.4 Transport Numbers and Liquid Junction Potentials 217
10.5 Transport Numbers and the Hittorf Method 220
10.6 The Gouy-Chapman Equation 221
10.7 Ohmic Drop 225
10.8 The Zero-Field Approximation 227
10.9 Self-Supported Reduction of the Cobaltocenium Cation 228
11 Voltammetry at the Nanoscale 233
11.1 Debye Length vs Diffusion Layer Thickness 233
11.2 Altered Electrode Kinetics and Reactivity at the Nanoscale 235
11.3 Nanoparticles:Case 4 Behaviour 236
11.4 'Coulomb Staircase'Effects 238
11.5 Ultrafast'Single Molecule'Voltammetry 239
11.6 Thin-Layer Effects in Nanoscale Voltammetry 242
11.7 Voltammetry in a Nanochannel 244
Index 249