当前位置:首页 > 数理化
伏安法教程题解  英文
伏安法教程题解  英文

伏安法教程题解 英文PDF电子书下载

数理化

  • 电子书积分:11 积分如何计算积分?
  • 作 者:(英)卡普顿著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2015
  • ISBN:9787510094705
  • 页数:253 页
图书介绍:本书是作者《伏安法教程》的同步习题和解答,为学习伏安法的读者在广阔的理论和实验背景上呈现了大量的习题并给出解答。本书的前几章专注于热动力学、电子输运和扩散的基础理论;紧接着是伏安测量实验和分析,包括大量的宏观和微观伏安法的扩展问题;剩下的章节是有关对流、流体力学电极、均相动力学、吸附和电分析应用等。目次:电化平衡和Nernst方程;电极动力学;扩散;大电极上的循环伏安法;显微电极上的伏安法;非均匀曲面上的伏安法;循环伏安法:耦合均相动力学和吸附;流体动力电极;影响因子伏安法;弱支持介质中。
《伏安法教程题解 英文》目录
标签:题解 教程

1 Equilibrium Electrochemistry and the Nernst Equation 1

1.1 Cell Thermodynamics 1

1.2 The Nernst Equation 2

1.3 The Nernst Equation 3

1.4 The Nernst Equation 5

1.5 Theory of the Nernst Equation 5

1.6 The Debye-Hückel Limiting Law 7

1.7 Cell Reaction and Equilibrium Constant 10

1.8 Cell Reaction and Equilibrium Constant 11

1.9 Cell Reaction and Solubility Product 12

1.10 Cell Reaction and pKa 13

1.11 Cell Thermodynamics and Temperature 14

1.12 Cell Thermodynamics and Temperature 15

1.13 Cell Energetics 16

1.14 Cell EMF and pH 17

1.15 Cell Reaction and Equilibria 18

1.16 Cell Reaction and Kw 19

1.17 Cell Reaction and Disproportionation 20

1.18 Fuel Cell Energetics 21

1.19 Fuel Cell Energetics 22

1.20 The Influence of Temperature on the Self-Ionisation of Water 23

1.21 Cell Reaction and Complexation 24

1.22 Reference Electrodes 26

1.23 Formal Potentials 27

1.24 Formal Potentials 28

1.25 Standard Potentials and pH 29

1.26 Standard Potentials and pH 30

1.27 Standard Potentials and pH 31

2 Electrode Kinetics 35

2.1 Faraday's Laws of Electrolysis 35

2.2 Electrodeposition 36

2.3 Tafel Analysis:One-Electron Processes 39

2.4 Tafel Analysis:Electrochemically Reversible Processes 39

2.5 Tafel Analysis:Mass Transport Correction 41

2.6 Tafel Analysis:Two-Electron Processes 42

2.7 The Butler-Volmer Equation and the Nernst Equation 45

2.8 The Hydrogen Evolution Reaction 46

2.9 Requirement for Supporting Electrolyte 47

2.10 Frumkin Corrections 49

2.11 Marcus Theory and Standard Electrochemical Rate Constants 51

2.12 Marcus Theory and Butler-Volmer Kinetics 52

2.13 Marcus Theory and the Role of Solvent 54

2.14 Marcus Theory and the Inverted Region 55

3 Diffusion 57

3.1 Fick's Laws of Diffusion 57

3.2 Fick's Laws of Diffusion 58

3.3 Diffusion Distances 59

3.4 The Cottrell Equation 60

3.5 Derivation of the Cottrell Equation 62

3.6 Diffusion and Root-Mean-Square Displacement 66

4 Cyclic Voltammetry at Macroelectrodes 67

4.1 Cyclic Voltammetry:Electrochemically Reversible Voltammetry 67

4.2 Cyclic Voltammetry:Electrochemically Irreversible Voltammetry 69

4.3 Reversible vs Irreversible Voltammetry 71

4.4 Voltammetric Diagnostics 72

4.5 Voltammetry and Scan Rate Effects 73

4.6 Ferrocene Voltammetry 75

4.7 Ferrocene Voltammetry 75

4.8 Features of Cyclic Voltammograms 76

4.9 Derivation of the Randles-?ev?ík Equation 77

4.10 Reversible Two-Electron Transfer 81

4.11 The Influence of pH on Cyclic Voltammetry 82

4.12 The Scheme of Squares 84

4.13 The EE-Comproportionation Mechanism 86

5 Voltammetry at Microelectrodes 91

5.1 Steady-State Concentration Profile in Spherical Space 91

5.2 Current Transients at a Spherical Electrode 93

5.3 Linear vs Convergent Diffusion 94

5.4 Dissolution of Microparticles 95

5.5 Steady-State Limiting Current at a Microdisc 97

5.6 Microdisc vs Planar Electrode 98

5.7 The Shoup-Szabo Equation 98

5.8 Steady-State Electrolysis 100

5.9 Effect of Unequal Diffusion Coefficients 101

5.10 Temperature Effects on Steady-State Currents 101

5.11 ECE Mechanism at a Microdisc Electrode 103

5.12 EC' Mechanism at a Microdisc Electrode 105

5.13 Size Effects on Half-Wave Potentials 106

5.14 Extracting Parameters from Microdisc Chronoamperometry 107

5.15 Extracting Parameters from Microdisc Chronoamperometry 109

6 Voltammetry at Heterogeneous Surfaces 111

6.1 Graphitic Electrodes 111

6.2 Carbon Nanotubes and Their Reactivity 113

6.3 Highly Ordered Pyrolytic Graphite and the Influence of Defects 114

6.4 Advantages of Arrays 115

6.5 Diffusional'Cases' 116

6.6 Geometry of a Regular Array 117

6.7 Analysis of Diffusion to Electrode Arrays 119

6.8 Partially Blocked Electrodes 121

7 Cyclic Voltammetry:Coupled Homogeneous Kinetics and Adsorption 123

7.1 EE Mechanism and Comproportionation 123

7.2 EE mechanism:The Reduction of [(η6-C6Me6)2Ru][BF4]2 124

7.3 EC2 Mechanism:The Reduction of the 2,6-Diphenyl Pyrylium Cation 126

7.4 Analysis of an Unknown Reaction Mechanism 128

7.5 EC Mechanism:Diethyl Maleate 130

7.6 ECE Mechanism:p-chlorobenzonitrile 133

7.7 ECE vs DISP 1:Voltammetry of Fluorescein 135

7.8 Reduction of Anthracene in DMF 137

7.9 CE Mechanism 140

7.10 EC' Mechanism 142

7.11 EC' Mechanism:Cysteine and Ferrocyanide 143

7.12 EC' Mechanism:Oxygen and Anthraquinone 145

7.13 Chronoamperometry of Adsorbed Species 146

7.14 Voltammetry of an Ideal Adsorbed Species 147

7.15 Non-Ideal Adsorbed Species 150

7.16 Irreversible Electron Transfer and Adsorbed Redox Species 153

7.17 Voltammetry of Ferrocyanide/Ferricyanide 157

8 Hydrodynamic Electrodes 159

8.1 Channel Electrodes and Limiting Currents 159

8.2 Channel Electrodes and Reynolds Number 160

8.3 Flow to Rotating Discs and in Channels 161

8.4 Channel Electrodes and ECE Processes 162

8.5 Channel Electrodes and ECE Processes 164

8.6 Channel Electrodes and Entry Length 167

8.7 Channel Electrodes and Diffusion Coefficients 167

8.8 Channel Electrodes and Current Distribution 169

8.9 Wall-Jet Electrodes and Current Distribution 170

8.10 Wall-Jet Electrodes and Diffusion Coefficients 170

8.11 Wall-Jet Electrode and a DISP 1 Process 172

8.12 Wall-Jet Electrode and EC Processes 173

8.13 Sono-Voltammetry 177

8.14 Rotating Disc Electrodes and Reynolds Number 178

8.15 Wall-Jet and Rotating Disc Electrodes 178

8.16 Rotating Disc Electrodes and ECE Processes 180

9 Voltammetry for Electroanalysis 183

9.1 Electrochemical Sizing of Gold Surfaces 183

9.2 Differential Pulse Voltammetry 185

9.3 Square-Wave Voltammetry 186

9.4 Square-Wave Voltammetry and Dissolved Oxygen 187

9.5 Stripping Voltammetry 188

9.6 Analysis of DNA 189

9.7 The Clark Cell 191

9.8 Calibration and Limits of Detection 193

9.9 Enzyme Electrodes 195

9.10 Glucose Biosensors 196

9.11 Detection of Vitamin B12 198

9.12 The Anodic Stripping Voltammetry of Industrial Effluent 200

9.13 Adsorptive Stripping Voltammetry at Carbon Nanotube Modified Electrodes 202

9.14 Surface Modified Electrodes 205

9.15 Electron Transfer Rates at Carbon Electrodes 208

10 Voltammetry in Weakly Supported Media:Migration and Other Effects 211

10.1 Coulomb's Law 211

10.2 The Nernst-Planck Equation 212

10.3 Migration and the Electric Field 215

10.4 Transport Numbers and Liquid Junction Potentials 217

10.5 Transport Numbers and the Hittorf Method 220

10.6 The Gouy-Chapman Equation 221

10.7 Ohmic Drop 225

10.8 The Zero-Field Approximation 227

10.9 Self-Supported Reduction of the Cobaltocenium Cation 228

11 Voltammetry at the Nanoscale 233

11.1 Debye Length vs Diffusion Layer Thickness 233

11.2 Altered Electrode Kinetics and Reactivity at the Nanoscale 235

11.3 Nanoparticles:Case 4 Behaviour 236

11.4 'Coulomb Staircase'Effects 238

11.5 Ultrafast'Single Molecule'Voltammetry 239

11.6 Thin-Layer Effects in Nanoscale Voltammetry 242

11.7 Voltammetry in a Nanochannel 244

Index 249

返回顶部