第1章 函数、极限与连续 1
第1节 初等函数 1
习题1-1 12
第2节 数列的极限 13
习题1-2 19
第3节 函数的极限 20
习题1-3 24
第4节 无穷小和无穷大 25
习题1-4 27
第5节 极限的运算法则 28
习题1-5 32
第6节 极限存在准则及两个重要极限 33
习题1-6 38
第7节 无穷小的比较 38
习题1-7 41
第8节 函数的连续性 41
习题1-8 48
第9节 闭区间上连续函数的性质 49
习题1-9 50
总习题1 51
第2章 导数与微分 53
第1节 导数的概念 53
习题2-1 59
第2节 导数的四则运算法则 60
习题2-2 62
第3节 复合函数的求导法则 63
习题2-3 68
第4节 高阶导数 69
习题2-4 71
第5节 隐函数的导数 72
习题2-5 76
第6节 函数的微分 77
习题2-6 82
总习题2 83
第3章 微分中值定理与导数的应用 85
第1节 微分中值定理 85
习题3-1 93
第2节 洛必达法则 94
习题3-2 98
第3节 函数的单调性和曲线的凹凸性 99
习题3-3 104
第4节 函数的极值与最大值、最小值问题 105
习题3-4 110
第5节 函数图形的描绘 111
习题3-5 114
第6节 弧微分与曲率 114
习题3-6 117
总习题3 117
第4章 不定积分 119
第1节 不定积分的概念与性质 119
习题4-1 125
第2节 第一类换元积分法 126
习题4-2 133
第3节 第二类换元积分法 135
习题4-3 139
第4节 分部积分法 139
习题4-4 144
第5节 有理函数和可化为有理函数的积分 145
习题4-5 152
总习题4 153
第5章 定积分 155
第1节 定积分的概念 155
习题5-1 160
第2节 定积分的基本性质 160
习题5-2 164
第3节 微积分基本公式 164
习题5-3 170
第4节 定积分的换元积分法和分部积分法 171
习题5-4 177
第5节 广义积分 179
习题5-5 183
第6节 定积分在几何学上的应用 184
习题5-6 193
第7节 定积分的物理应用 194
习题5-7 198
总习题5 199
第6章 空间解析几何 202
第1节 预备知识 202
习题6-1 208
第2节 向量的向量积 208
习题6-2 212
第3节 平面及其方程 212
习题6-3 217
第4节 空间直线及其方程 217
习题6-4 223
第5节 曲面及其方程 224
习题6-5 230
第6节 空间曲线及其方程 230
习题6-6 234
总习题6 235
附录Ⅰ 几种常用的曲线 237
附录Ⅱ 简明积分表 239
参考答案 248