第一章 经典理论 1
1-1 最小作用原理 1
1-1-1 经典运动 1
Lagrange方程和Hamilton方程.Poisson括 10
号.相对论性点粒子.正则变换. 10
1-1-2 电磁场作为一个无穷大动力学系统 10
上册 11
序言 11
目录 11
一般的参考书目 15
Maxwell方程.规范不变性.电磁作用量. 17
1-1-3 点粒子的电磁相互作用 17
1-2 对称性和守恒定律 27
1-2-1 基本的不变量 27
进动.Bargmann-Michel-Telegdi方程.和平面 27
波的相互作用. 27
Lorentz力定律.恒场.回转磁比率.Thomas 27
时间平移和能量守恒.动量和角动量. 31
1-2-2 能量-动量张量 31
正则张量.电磁对称张量.封闭系统.广义角 38
动量.哈密顿形式. 38
1-2-3 内部对称性 38
无穷小变换.Noether定理.荷.具有Poisson 43
括号的李代数.最小耦合. 43
1-3 传播与辐射 43
1-3-1 Green函数 43
1-3-2 辐射 48
数.Feynman传播子. 48
迭加原理.推迟Green函数和超前Green函 48
Lienard-Wiechert势. 辐射功率的Larmor公 60
式.Thomson散射.轫致辐射.自相互作用. 60
Lorentz-Dirac方程.Runaway解.Acausal效应.第二章 Dirac方程 60
2-1 相对论性波方程的建立 60
2-1-1 量子力学和相对论 60
Klein-Gordon方程.负能量.不定模方. 64
2-1-2 Dirac方程 64
r矩阵.具有正密度的守恒流. 67
2-1-3 相对论协变性 67
变换定律.质量和自旋.宇称.双线型密度. 73
2-2 物理内容 73
2-2-1 平面波解和投影算符 73
2-2-2 波包 79
正能解和负能解.在具有确定动量和极化的态 79
上的投影算符. 79
群速度.Zitterbewegung和Klein的佯谬. 84
2-2-3 电磁耦合 84
最小耦合.非相对论极限和Pauli方程.在恒 91
磁场中的解和在电磁平面波中的解. 91
2-2-4 Foldy-Wouthuysen变换 91
相对论修正.自旋-轨道耦合.Darwin项. 95
2-3 类氢原子 95
2-3-1 非相对论谱与相对论谱的比较 95
Balmer谱.Klein-Gordon方程的预言. 97
2-3-2 Dirac理论 97
2-4-1 负能解的重新解释 111
2-4 空穴理论和电荷共轭 111
和辐射效应. 111
精细结构分裂.相对论波函数.超精细分裂 111
空穴和正电子.多体理论. 113
2-4-2 电荷共轭 113
Dirac方程的电荷共轭算符和不变性. 115
2-4-3 零质量粒子 115
手征性.二分量理论.CP不变性. 118
2-5 Dirac传播子 118
2-5-1 自由传播子 118
由空穴理论观点产生的推迟传播子和Feynman 123
传播子. 123
2-5-2 在任意外电磁场中的传播 123
2-5-3 对Coulomb散射的应用 125
外场中传播子的微扰展开. 125
经典的Rutherford散射.Mott公式. 131
2-5-4 Fock-Schwinger固有时间方法 131
在恒匀场或平面波场中的传播. 141
第三章 自由场的量子化 141
3-1 正则量子化 141
3-1-1 一般形式 143
共轭动量和量子化.一维晶体.声子.正规编 153
序.Bose对称.Fock空间. 153
3-1-2 标量场 153
不变测度.相对论不变性.场对易子.具有固 161
定粒子数的态.相干态.场分布. 161
3-1-3 荷电标量场 161
共轭. 164
3-1-4 编时乘积 164
U(1)不变性.守恒荷.粒子和反粒子.电荷 164
Feynman传播子的复原. 166
3-1-5 热力学平衡 166
Bose-Einstein分布.状态方程.有限温度下的 169
传播子. 169
3-2 量子化的辐射场 169
3-2-1 不定度规 169
Gupta-Bleuler量子化.横光子. 178
3-2-2 传播子 178
Feynman规范传播子.推广到任意的λ. 180
3-2-3 有质量的矢量场 180
Proca方程和Stueckelberg方程.零质量极限. 185
利用恒场方法得到的光子质量的上限. 185
3-2-4 真空涨落 185
3-3 Dirac场和不相容原理 191
Casimir效应.Van der Waals力. 191
3-3-1 反对易子 192
Dirac场的量子化和能量的正定性. 196
3-3-2 费米子的Fock空间 196
荷和自旋.反对称态和Fermi-Dirac统计. 200
3-3-3 自旋和统计之间的关系——传播子 200
定域量子理论表明的自旋和统计之间的联系. 203
3-4 分立对称性 203
3-4-1 宇称 204
3-4-2 电荷共轭 205
3-4-3 时间反演 208
3-4-4 总结 210
4-1-1 发射几率 220
4-1 和经典源相互作用的量子化的电磁场 220
Fierz重排定理. 220
二次型的变换性质.PCT定理. 形状因子. 220
第四章 和外场的相互作用 220
S矩阵.Poisson分布. 229
4-1-2 发射的能量和红外灾难 229
有限能量与无限的光子数. 233
4-1-3 感生吸收和感生发射 233
受激发射. 236
4-1-4 S矩阵和演化算符 236
相互作用表象.S矩阵的普遍形式. 242
4-2 Wick定理 242
4-2-1 Bose场 242
来自生成泛函的Wick恒等式. 245
4-2-2 Fermi场 245
4-2-3 一般情况 249
Grassmann代数形式. 249
4-3 量子Dirac场和经典势的作用 250
4-3-1 一般描述 250
Fredholm行列式.规范不变性和么正性. 258
4-3-2 精确到最低级的发射几率 258
4-3-3 在恒定均匀电场中的粒子对产生 260
非微扰隧道效应. 263
4-3-4 Euler-Heisenberg等效拉氏函数 263
缓变场的等效作用量.场的重整化. 第四阶 267
表达式. 267
第五章 基本过程 267
5-1 S矩阵和渐近理论 267
5-1-1 截面 268
5-1-2 渐近理论 272
in态和out态.S矩阵和T矩阵.不变截面. 272
场对易子的真空期待值的K?llen-Lehmann表示.5-1-3 约化公式 276
Lehmann-Symanzik-Zimmermann理论体系. 279
5-1-4 生成泛函 279
5-1-5 连接部分 283
5-1-6 费米子 286
5-1-7 光子 291
流守恒和协变的编时乘积. 301
5-2 应用 301
5-2-1 Compton效应 301
Klein-Nishina相对论公式. 310
5-2-2 粒子对湮灭 310
5-2-3 电子偶素(Positronium)的寿命 313
Dirac公式. 313
最低阶的单态和三重态的寿命. 320
5-2-4 轫致辐射 320
核的Coulomb场中光发射的Bethe-Heitler截 324
面. 324
5-3 么正性和因果性 324
5-3-1 么正性和分波分解 325
光学定理.Jacob和Wick的分波展开. 331
5-3-2 因果性和解析性 331
推迟对易子.组态和动量空间中支集的特性. 336
交叉对称性. 336
5-3-3 Jost-Lehmann-Dyson表示 336
5-3-4 向前色散关系 338
5-3-5 动量转移解析性 345
效π介子-核子耦合的确定. 345
一般的推导.应用于π介子-核子的散射.等 345
小的和大的Lehmann椭圆.Froissart界限.Po- 352
meranchuk定理. 352
第六章 微扰论 352
6-1 积分表示和Feynman规则 352
6-1-1 自作用标量场 353
相互作用表象中的微扰级数.组态和动量空 365
间中的Feynman规则.对称因子. 365
6-1-2 旋量电动力学的Feynman规则 365
Furry定理. 372
6-1-3 电子-电子和电子-正电子散射 372
Mφller公式和Rhabha公式. 379
6-1-4 标量场电动力学 379
6-2 图论 386
6-2-1 圈展开 386
标量场电动力学中协变微扰规则的推导和基 386
本过程的计算. 386
用Planck常数的幂次计算圈数. 388
6-2-2 截腿的和固有的图形 388
拓扑和代数的定义.Legendre变换. 395
6-2-3 参量表示 395
用参量α表示的Feynman积分的一般表达式. 401
6-2-4 欧氏空间的Green函数 401
在微扰展开式中逐项进行Wick转动. 405
6-3 解析性 405
6-3-1 Landau方程 406
6-3-2 实奇异性 410
6-3-3 简单图的实奇异性 414
正规阈和反常阈. 414
单圈泡图,顶角图和箱图.Mandelstam表示. 422
6-3-4 物理区奇异性.Cutkosky规则 422
第七章 辐射修正 428
7-1 单圈图重整化 428
7-1-1 真空极化 429
真空极化张量. 规范不变的正规化.重整化 443
的荷.关于Lamb位移的效应. 443
7-1-2 电子传播子 443
电子自能的规范依赖性和红外问题. 452
7-1-3 顶角函数 452
Ward恒等式。在壳顶角函数.形状因子. 463
7-1-4 总结 463
7-2-1 等效相互作用和反常磁矩 468
7-2 和外场相互作用时的辐射修正 468
抵消项和裸拉氏函数.幂次计数. 468
7-2-2 对Coulomb散射的辐射修正 471
对Mott公式的α3阶修正. 476
7-2-3 软轫致辐射 476
7-2-4 有限的单举截面 478
7-3 新的效应 480
7-3-1 光子-光子散射 480
低能和高能行为. 在零频率极限下的显表达 484
式. 484
7-3-2 Lamb位移 484
对束缚态能级的辐射修正和领头α(Zα)4阶 494
Lamb位移的计算. 494
7-3-3 大距离处的Van der Waals力 494