第8章 向量代数与空间解析几何 1
8.1 向量及其线性运算 1
8.2 空间直角坐标系 5
8.3 向量的代数表示 9
8.4 向量的数量积 向量积 混合积 13
8.5 曲面及其方程 22
8.6 空间曲线及其方程 26
8.7 平面及其方程 30
8.8 空间直线及其方程 36
8.9 常见的二次曲面 43
8.10 本章小结 48
复习题八 53
第9章 多元函数微分学 55
9.1 多元函数的概念 55
9.2 偏导数 68
9.3 全微分及其应用 76
9.4 多元函数微分法 85
9.5 方向导数及梯度 102
9.6 多元函数微分法在几何上的应用 108
9.7 多元函数的极值与最值 115
9.8 本章小结 127
复习题九 131
阶段自测题四 133
第10章 重积分 134
10.1 二重积分的概念与性质 134
10.2 二重积分的计算 142
10.3 三重积分的概念及其计算法 166
10.4 本章小结 190
复习题十 197
阶段自测题五 199
第11章级数 201
11.1 数项级数的概念和性质 201
11.2 数项级数的审敛法 210
11.3 幂级数 226
11.4 傅里叶级数 249
11.5 本章小结 269
复习题十一 273
第12章 常微分方程 276
12.1 微分方程的基本概念 276
12.2 一阶微分方程 279
12.3 可降阶的高阶微分方程 293
12.4 二阶线性微分方程解的结构 300
12.5 二阶常系数线性齐次方程 303
12.6 二阶常系数线性非齐次方程 308
12.7 本章小结 315
复习题十二 318
阶段自测题六 319
附录1 二阶和三阶行列式简介 321
附录2 模拟试题 324
期中模拟试题一 324
期中模拟试题二 325
期末模拟试题一 327
期末模拟试题二 328
附录3 参考答案 330