《医学物理学》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:洪洋
  • 出 版 社:北京:科学出版社
  • 出版年份:2020
  • ISBN:9787030637055
  • 页数:370 页
图书介绍:

Chapter 1 Introduction 1

1.1 WHY STUDY PHYSICS? 1

1.2 TALKING PHYSICS 1

1.3 PHYSICS FOR MEDICINE AND BIOLOGY 2

1.3.1 Physics in Life Science 2

1.3.2 Biomedical Applications 3

1.4 THE USE OF MATHEMATICS 3

1.4.1 Mathematics Base 3

1.4.2 Ratios and Proportions 3

1.4.3 Approximation 4

1.5 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 6

1.5.1 Rules for Identifying Significant Figures 6

1.5.2 Significant Figures in Calculations 7

1.6 UNITS 8

1.7 DIMENSIONAL ANALYSIS 10

1.8 PROBLEM-SOLVING TECHNIQUES 12

Chapter 2 Mechanics 16

2.1 UNIFORM CIRCULAR MOTION 16

2.1.1 Angular Displacement and Angular Velocity 16

2.1.2 Radian Measure 17

2.1.3 Relation between Linear and Angular Speed 18

2.1.4 Period and Frequency 18

2.2 RADIAL ACCELERATION 19

2.2.1 Direction of Radial Acceleration 19

2.2.2 Magnitude of the Radial Acceleration 20

2.3 TANGENTIAL ACCELERATION AND ANGULAR ACCELERATION 22

2.3.1 Tangential Acceleration and Angular Acceleration 22

2.3.2 Constant Angular Acceleration 22

2.4 ROTATIONAL KINETIC ENERGY AND ROTATIONAL INERTIA 23

2.5 TORQUE 27

2.5.1 Torque 27

2.5.2 Lever Arms 30

2.6 ROTATIONAL EQUILIBRIUM 32

2.7 ANGULAR MOMENTUM 36

2.7.1 Angular Momentum 36

2.7.2 The Vector Nature of Angular Momentum 39

Chapter 3 Fluids 45

3.1 STATES OF MATTER 45

3.2 FLUID FLOW 45

3.2.1 Types of Fluid Flow 45

3.2.2 The Ideal Fluid 46

3.2.3 The Continuity Equation 46

3.3 BERNOULLI’S EQUATION 48

3.4 VISCOSITY 51

3.4.1 Poiseuille’s Law 53

3.4.2 Application of Viscous Flow 53

3.5 VISCOUS DRAG 54

3.6 SURFACE TENSION 55

3.6.1 Application: How Insects Can Walk on the Surface of a Pond 55

3.6.2 Application: Surfactant in the Lungs 56

3.6.3 Bubbles 56

Chapter 4 Elasticity and Oscillations 60

4.1 ELASTIC DEFORMATIONS OF SOLIDS AND HOOKE’S LAW 60

4.2 SHEAR AND VOLUME DEFORMATIONS 62

4.2.1 Shear Deformation 62

4.2.2 Volume Deformation 64

4.3 SIMPLE HARMONIC MOTION 65

4.4 THE PERIOD AND FREQUENCY FOR SHM 68

4.4.1 Definitions of Period and Frequency 68

4.4.2 A Vertical Mass and Spring 70

4.5 GRAPHICAL ANALYSIS OF SHM 72

4.6 THE PENDULUM 73

4.6.1 Simple Pendulum 73

4.6.2 Physical Pendulum 74

4.7 DAMPED OSCILLATIONS, FORCED OSCILLATIONS AND RESONANC 76

Chapter 5 Waves 82

5.1 BASIC PROPERTIES OF WAVES 82

5.1.1 Waves and Energy Transport 82

5.1.2 Transverse and Longitudinal Waves 83

5.1.3 Periodic Waves 85

5.2 MATHEMATICAL DESCRIPTION OF A WAVE 86

5.2.1 Traveling Waves 86

5.2.2 Harmonic Traveling Waves 86

5.3 GRAPHING WAVES 88

5.4 PRINCIPLE OF SUPERPOSITION 89

5.5 REFLECTION AND REFRACTION 90

5.5.1 Reflection 90

5.5.2 Change in Wavelength at a Boundary 91

5.5.3 Refraction 91

5.6 INTERFERENCE AND DIFFRACTION 92

5.6.1 Interference 92

5.6.2 Coherence 93

5.6.3 Diffraction 94

5.7 STANDING WAVES 94

Chapter 6 Sound 100

6.1 SOUND WAVE 100

6.1.1 Basic Properties of Sound Wave 100

6.1.2 Frequency Ranges of Animal Hearing 101

6.1.3 Attenuation of Sound Waves 101

6.1.4 Amplitude and Intensity of Sound Waves 102

6.2 THE HUMAN EAR 105

6.2.1 Structure of human Ear 105

6.2.2 Loudness 106

6.2.3 Pitch 106

6.2.4 Localization 106

6.3 BEATS 106

6.4 THE DOPPLER EFFECT 108

6.4.1 Moving Source 109

6.4.2 Moving Observer 109

6.4.3 Shock Waves 110

6.5 ECHOLOCATION AND MEDICAL IMAGING 111

6.5.1 Animal Echolocation 111

6.5.2 Sonar and Radar 112

6.5.3 Medical Applications of Ultrasound 112

Chapter 7 Electrostatic Fields 115

7.1 ELECTRIC FIELDS 115

7.1.1 Electric Charge 115

7.1.2 Coulomb’s Law 119

7.1.3 The Electric Field 122

7.2 MOTION OF A POINT CHARGE IN A UNIFORM ELECTRIC FIELD 130

7.3 GAUSS’S LAW FOR ELECTRIC FIELDS 134

7.3.1 Gauss’s Law 134

7.3.2 Using Gauss’s Law to Find the Electric Field 136

7.4 ELECTRIC POTENTIAL ENERGY 138

7.5 ELECTRIC POTENTIAL 141

7.5.1 Electric Potential 141

7.5.2 The Relationship between Electric Field and Potential 147

7.6 CAPACITORS 149

7.7 DIELECTRICS 152

7.7.1 Dielectrics 152

7.7.2 Polarization in a Dielectric 153

7.8 ENERGY STORED IN A CAPACITOR 156

7.8.1 Energy Stored in a Capacitor 156

7.8.2 Energy Stored in an Electric Field 158

Chapter 8 Electric Current and Circuit 163

8.1 ELECTIC CURRENT 163

8.1.1 Conventional Current 163

8.1.2 Electric Current in Liquids and Gases 164

8.1.3 Application: Current in Neon Signs and Fluorescent Lights 164

8.2 EMF AND CIRCUITS 165

8.2.1 Circuit Symbols 165

8.2.2 EMF in an Electric Circuit 165

8.2.3 Circuits 166

8.3 MICROSCOPIC VIEW OF CURRENT IN A METAL: THE FREE-ELECTRON MODEL 167

8.3.1 The Free-electron Model 167

8.3.2 Relationship between Current and Drift Velocity 168

8.4 RESISTANCE AND RESISTIVITY 169

8.4.1 Resistance and Ohm’s Law 169

8.4.2 Microscopic Origin of Ohm’s Law 170

8.4.3 Resistivity 170

8.4.4 Resistivity of Water 171

8.4.5 Resistivity Depends on Temperature 172

8.4.6 Resistors 173

8.4.7 Internal Resistance of a Battery 173

8.5 KIRCHHOFF’S RULES 174

8.6 SERIES AND PARALLEL CIRCUITS 175

8.6.1 Resistors in Series 175

8.6.2 EMFs in Series 176

8.6.3 Capacitors in Series 176

8.6.4 Resistors in Parallel 177

8.6.5 EMFs in Parallel 180

8.6.6 Capacitors in Parallel 180

8.7 CIRCUIT ANALYSIS USING KIRCHHOFF’S RULES 181

8.8 RC CIRCUITS 183

8.8.1 Charging RC Circuit 183

8.8.2 Discharging RC Circuit 185

8.8.3 Application of RC Circuits in Neurons 185

Chapter 9 Magnetic Forces and Fields 190

9.1 MAGNETIC FIELDS 190

9.1.1 Permanent Magnets and Magnetic Dipoles 190

9.1.2 Magnetic Field Lines 192

9.1.3 The Earth’s Magnetic Field 192

9.1.4 Application: Magnetotactic Bacteria 193

9.2 MAGNETIC FORCE ON A POINT CHARGE 193

9.2.1 Cross Product of Two Vectors 194

9.2.2 Direction of the Magnetic Force 195

9.3 MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 199

9.3.1 Charged Particle Moving Perpendicularly to A Uniform Magnetic Fiel 199

9.3.2 Motion of A Charged Particle in A Uniform Magnetic Field: General 203

9.3.3 A Charged Particle in Crossed E and B Fields 204

9.4 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE 208

9.5 TORQUE ON A CURRENT LOOP 210

9.5.1 Torque on a Magnetic Dipole 211

9.5.2 Application: Electric Motor 211

9.5.3 Application: Galvanometer 212

9.5.4 Application: Audio Speakers 213

9.6 MAGNETIC FIELD DUE TO AN ELECTRIC CURRENT 214

9.6.1 Magnetic Field due to a Long Straight Wire 214

9.6.2 Magnetic Field due to a Circular Current Loop 216

9.6.3 Magnetic Field due to a Solenoid 217

9.6.4 Application: Magnetic Resonance Imaging 218

9.7 AMPERE’S LAW 218

9.8 MAGNETIC MATERIALS 219

9.8.1 Paramagnetism 220

9.8.2 Ferromagnetism 220

9.8.3 Diamagnetism 221

9.8.4 Application: Electromagnets 221

9.8.5 Application: Magnetic Storage 221

Chapter 10 Electromagnetic Induction 226

10.1 MOTIONAL EMF 226

10.2 FARADAY’S LAW, LENZ’ S LAW, EDDY CURRENTS 229

10.2.1 Faraday’s Law 229

10.2.2 Lenz’s Law 233

10.2.3 Eddy Currents 236

10.3 INDUCED ELECTRIC FIELDS, INDUCTANCE 237

10.3.1 Induced Electric Fields 237

10.3.2 Inductance 238

10.4 LR CIRCUITS 241

10.5 MAXWELL’S EQUATIONS AND ELECTROMAGNETIC WAVES 244

10.5.1 Accelerating Charges Produce Electromagnetic Waves 244

10.5.2 Maxwell’s Equations 245

10.6 THE ELECTROMAGNETIC SPECTRUM 245

10.6.1 Visible Light 246

10.6.2 Infrared 246

10.6.3 Ultraviolet 247

10.6.4 Radio Waves 248

10.6.5 Microwaves 248

10.6.6 X-Rays and Gamma Rays 249

Chapter 11 Geometric Optics 253

11.1 THE FORMATION OF IMAGES THROUGH REFLECTION OR REFRACTION 253

11.1.1 Real and Virtual Images 253

11.1.2 Plane Mirrors 254

11.2 SPHERICAL MIRRORS 254

11.2.1 Convex Spherical Mirror 254

11.2.2 Concave Spherical Mirror 256

11.3 THIN LENSES 256

11.3.1 Focal Points and Principal Rays 257

11.3.2 The Magnification and Thin Lens Equations 258

11.4 LENSES IN COMBINATION 260

11.4.1 Ray Diagrams for Two Lenses 260

11.4.2 Transverse Magnification 261

11.5 THE EYE 263

11.5.1 Accommodation 264

11.5.2 Application: Correcting Myopia 264

11.5.3 Application: Correcting Hyperopia 265

11.6 COMPOUND MICROSCOPES AND ABERRATIONS OF LENSES AND MIRRORS 268

11.6.1 Compound Microscope 268

11.6.2 The Transmission Electron Microscope 269

11.6.3 Aberrations of Lenses and Mirrors 270

Chapter 12 Wave Properties of Light 275

12.1 HUYGENS’S PRINCIPLE 275

12.1.1 Sources of Light 275

12.1.2 Wavefronts and Rays 275

12.1.3 Huygens’s Principle 276

12.2 CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE 277

12.2.1 Coherent and Incoherent Sources 277

12.2.2 Interference of Two Coherent Waves 278

12.2.3 Phase Difference due to Different Paths 279

12.3 THIN FILM 281

12.3.1 Phase Shifts due to Reflection 282

12.3.2 Problem-Solving Strategy for Thin Films 283

12.3.3 Thin Films of Air 284

12.4 YOUNG’S DOUBLE-SLIT EXPERIMENT 287

12.5 GRATINGS 290

12.6 DIFFRACTION AND RESOLUTION OF OPTICAL INSTRUMENTS 293

12.6.1 Diffraction by a Single Slit 293

12.6.2 Diffraction and Resolution of Optical Instruments 296

12.7 X-RAY DIFFRACTION 299

12.8 POLARIZATION 300

12.8.1 Linear Polarization 300

12.8.2 Circular Polarization 302

12.8.3 Polarizers 302

12.8.4 Polarization by Scattering 304

12.8.5 Polarization by Reflection 308

Chapter 13 THE BASIS OF QUANTUM MECHANICS 313

13.1 QUANTIZATION 313

13.2 BLACKBODY RADIATION 314

13.3 THE PHOTOELECTRIC EFFECT 315

13.3.1 Experimental Results 315

13.3.2 The Photon 316

13.3.3 The Electron-Volt 318

13.3.4 The Photon Theory Explains the Photoelectric Effect 318

13.3.5 Applications of the Photoelectric Effect 319

13.4 X-RAY PRODUCTION 319

13.5 COMPTON SCATTERING 321

13.6 THE WAVE-PARTICLE DUALITY AND MATTER WAVES 323

13.6.1 Double-Slit Interference Experiment 323

13.6.2 Matter Waves 324

13.6.3 Matter Waves and Probability 327

13.7 ELECTRON MICROSCOPES 327

13.8 THE UNCERTAINTY PRINCIPLE 329

13.8.1 Position-momentum uncertainty principle 329

13.8.2 Energy-Time Uncertainty Principle 331

Chapter 14 Nuclear Physics 335

14.1 NUCLEAR STRUCTURE AND BINDING ENERGY 335

14.1.1 Nuclear Structure 335

14.1.2 Sizes of Nuclei 336

14.1.3 Binding Energy 337

14.1.4 Binding Energy and Mass Defect 338

14.1.5 Nuclear Energy Levels 340

14.2 RADIOACTIVITY 341

14.2.1 Conservation Laws in Radioactive Decay 342

14.2.2 Alpha Decay 343

14.2.3 Beta Decay 344

14.2.4 Gamma Decay 346

14.2.5 Other Radioactive Decay Modes 347

14.3 RADIOACTIVE DECAY RATES AND HALF-LIVES 347

14.3.1 Radioactivity Decay Law 347

14.3.2 Application: Radiocarbon Dating 349

14.4 BIOLOGICAL EFFECTS OF RADIATION 351

14.4.1 Radiation Dose 351

14.4.2 Penetration of Radiation 354

14.4.3 Medical Applications of Radiation 354

Appendix A English-Chinese Index 359

Appendix B Table of Selected Nuclides 363

Answers to Problems 366