Chapter 1 Introduction 1
1.1 WHY STUDY PHYSICS? 1
1.2 TALKING PHYSICS 1
1.3 PHYSICS FOR MEDICINE AND BIOLOGY 2
1.3.1 Physics in Life Science 2
1.3.2 Biomedical Applications 3
1.4 THE USE OF MATHEMATICS 3
1.4.1 Mathematics Base 3
1.4.2 Ratios and Proportions 3
1.4.3 Approximation 4
1.5 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 6
1.5.1 Rules for Identifying Significant Figures 6
1.5.2 Significant Figures in Calculations 7
1.6 UNITS 8
1.7 DIMENSIONAL ANALYSIS 10
1.8 PROBLEM-SOLVING TECHNIQUES 12
Chapter 2 Mechanics 16
2.1 UNIFORM CIRCULAR MOTION 16
2.1.1 Angular Displacement and Angular Velocity 16
2.1.2 Radian Measure 17
2.1.3 Relation between Linear and Angular Speed 18
2.1.4 Period and Frequency 18
2.2 RADIAL ACCELERATION 19
2.2.1 Direction of Radial Acceleration 19
2.2.2 Magnitude of the Radial Acceleration 20
2.3 TANGENTIAL ACCELERATION AND ANGULAR ACCELERATION 22
2.3.1 Tangential Acceleration and Angular Acceleration 22
2.3.2 Constant Angular Acceleration 22
2.4 ROTATIONAL KINETIC ENERGY AND ROTATIONAL INERTIA 23
2.5 TORQUE 27
2.5.1 Torque 27
2.5.2 Lever Arms 30
2.6 ROTATIONAL EQUILIBRIUM 32
2.7 ANGULAR MOMENTUM 36
2.7.1 Angular Momentum 36
2.7.2 The Vector Nature of Angular Momentum 39
Chapter 3 Fluids 45
3.1 STATES OF MATTER 45
3.2 FLUID FLOW 45
3.2.1 Types of Fluid Flow 45
3.2.2 The Ideal Fluid 46
3.2.3 The Continuity Equation 46
3.3 BERNOULLI’S EQUATION 48
3.4 VISCOSITY 51
3.4.1 Poiseuille’s Law 53
3.4.2 Application of Viscous Flow 53
3.5 VISCOUS DRAG 54
3.6 SURFACE TENSION 55
3.6.1 Application: How Insects Can Walk on the Surface of a Pond 55
3.6.2 Application: Surfactant in the Lungs 56
3.6.3 Bubbles 56
Chapter 4 Elasticity and Oscillations 60
4.1 ELASTIC DEFORMATIONS OF SOLIDS AND HOOKE’S LAW 60
4.2 SHEAR AND VOLUME DEFORMATIONS 62
4.2.1 Shear Deformation 62
4.2.2 Volume Deformation 64
4.3 SIMPLE HARMONIC MOTION 65
4.4 THE PERIOD AND FREQUENCY FOR SHM 68
4.4.1 Definitions of Period and Frequency 68
4.4.2 A Vertical Mass and Spring 70
4.5 GRAPHICAL ANALYSIS OF SHM 72
4.6 THE PENDULUM 73
4.6.1 Simple Pendulum 73
4.6.2 Physical Pendulum 74
4.7 DAMPED OSCILLATIONS, FORCED OSCILLATIONS AND RESONANC 76
Chapter 5 Waves 82
5.1 BASIC PROPERTIES OF WAVES 82
5.1.1 Waves and Energy Transport 82
5.1.2 Transverse and Longitudinal Waves 83
5.1.3 Periodic Waves 85
5.2 MATHEMATICAL DESCRIPTION OF A WAVE 86
5.2.1 Traveling Waves 86
5.2.2 Harmonic Traveling Waves 86
5.3 GRAPHING WAVES 88
5.4 PRINCIPLE OF SUPERPOSITION 89
5.5 REFLECTION AND REFRACTION 90
5.5.1 Reflection 90
5.5.2 Change in Wavelength at a Boundary 91
5.5.3 Refraction 91
5.6 INTERFERENCE AND DIFFRACTION 92
5.6.1 Interference 92
5.6.2 Coherence 93
5.6.3 Diffraction 94
5.7 STANDING WAVES 94
Chapter 6 Sound 100
6.1 SOUND WAVE 100
6.1.1 Basic Properties of Sound Wave 100
6.1.2 Frequency Ranges of Animal Hearing 101
6.1.3 Attenuation of Sound Waves 101
6.1.4 Amplitude and Intensity of Sound Waves 102
6.2 THE HUMAN EAR 105
6.2.1 Structure of human Ear 105
6.2.2 Loudness 106
6.2.3 Pitch 106
6.2.4 Localization 106
6.3 BEATS 106
6.4 THE DOPPLER EFFECT 108
6.4.1 Moving Source 109
6.4.2 Moving Observer 109
6.4.3 Shock Waves 110
6.5 ECHOLOCATION AND MEDICAL IMAGING 111
6.5.1 Animal Echolocation 111
6.5.2 Sonar and Radar 112
6.5.3 Medical Applications of Ultrasound 112
Chapter 7 Electrostatic Fields 115
7.1 ELECTRIC FIELDS 115
7.1.1 Electric Charge 115
7.1.2 Coulomb’s Law 119
7.1.3 The Electric Field 122
7.2 MOTION OF A POINT CHARGE IN A UNIFORM ELECTRIC FIELD 130
7.3 GAUSS’S LAW FOR ELECTRIC FIELDS 134
7.3.1 Gauss’s Law 134
7.3.2 Using Gauss’s Law to Find the Electric Field 136
7.4 ELECTRIC POTENTIAL ENERGY 138
7.5 ELECTRIC POTENTIAL 141
7.5.1 Electric Potential 141
7.5.2 The Relationship between Electric Field and Potential 147
7.6 CAPACITORS 149
7.7 DIELECTRICS 152
7.7.1 Dielectrics 152
7.7.2 Polarization in a Dielectric 153
7.8 ENERGY STORED IN A CAPACITOR 156
7.8.1 Energy Stored in a Capacitor 156
7.8.2 Energy Stored in an Electric Field 158
Chapter 8 Electric Current and Circuit 163
8.1 ELECTIC CURRENT 163
8.1.1 Conventional Current 163
8.1.2 Electric Current in Liquids and Gases 164
8.1.3 Application: Current in Neon Signs and Fluorescent Lights 164
8.2 EMF AND CIRCUITS 165
8.2.1 Circuit Symbols 165
8.2.2 EMF in an Electric Circuit 165
8.2.3 Circuits 166
8.3 MICROSCOPIC VIEW OF CURRENT IN A METAL: THE FREE-ELECTRON MODEL 167
8.3.1 The Free-electron Model 167
8.3.2 Relationship between Current and Drift Velocity 168
8.4 RESISTANCE AND RESISTIVITY 169
8.4.1 Resistance and Ohm’s Law 169
8.4.2 Microscopic Origin of Ohm’s Law 170
8.4.3 Resistivity 170
8.4.4 Resistivity of Water 171
8.4.5 Resistivity Depends on Temperature 172
8.4.6 Resistors 173
8.4.7 Internal Resistance of a Battery 173
8.5 KIRCHHOFF’S RULES 174
8.6 SERIES AND PARALLEL CIRCUITS 175
8.6.1 Resistors in Series 175
8.6.2 EMFs in Series 176
8.6.3 Capacitors in Series 176
8.6.4 Resistors in Parallel 177
8.6.5 EMFs in Parallel 180
8.6.6 Capacitors in Parallel 180
8.7 CIRCUIT ANALYSIS USING KIRCHHOFF’S RULES 181
8.8 RC CIRCUITS 183
8.8.1 Charging RC Circuit 183
8.8.2 Discharging RC Circuit 185
8.8.3 Application of RC Circuits in Neurons 185
Chapter 9 Magnetic Forces and Fields 190
9.1 MAGNETIC FIELDS 190
9.1.1 Permanent Magnets and Magnetic Dipoles 190
9.1.2 Magnetic Field Lines 192
9.1.3 The Earth’s Magnetic Field 192
9.1.4 Application: Magnetotactic Bacteria 193
9.2 MAGNETIC FORCE ON A POINT CHARGE 193
9.2.1 Cross Product of Two Vectors 194
9.2.2 Direction of the Magnetic Force 195
9.3 MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 199
9.3.1 Charged Particle Moving Perpendicularly to A Uniform Magnetic Fiel 199
9.3.2 Motion of A Charged Particle in A Uniform Magnetic Field: General 203
9.3.3 A Charged Particle in Crossed E and B Fields 204
9.4 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE 208
9.5 TORQUE ON A CURRENT LOOP 210
9.5.1 Torque on a Magnetic Dipole 211
9.5.2 Application: Electric Motor 211
9.5.3 Application: Galvanometer 212
9.5.4 Application: Audio Speakers 213
9.6 MAGNETIC FIELD DUE TO AN ELECTRIC CURRENT 214
9.6.1 Magnetic Field due to a Long Straight Wire 214
9.6.2 Magnetic Field due to a Circular Current Loop 216
9.6.3 Magnetic Field due to a Solenoid 217
9.6.4 Application: Magnetic Resonance Imaging 218
9.7 AMPERE’S LAW 218
9.8 MAGNETIC MATERIALS 219
9.8.1 Paramagnetism 220
9.8.2 Ferromagnetism 220
9.8.3 Diamagnetism 221
9.8.4 Application: Electromagnets 221
9.8.5 Application: Magnetic Storage 221
Chapter 10 Electromagnetic Induction 226
10.1 MOTIONAL EMF 226
10.2 FARADAY’S LAW, LENZ’ S LAW, EDDY CURRENTS 229
10.2.1 Faraday’s Law 229
10.2.2 Lenz’s Law 233
10.2.3 Eddy Currents 236
10.3 INDUCED ELECTRIC FIELDS, INDUCTANCE 237
10.3.1 Induced Electric Fields 237
10.3.2 Inductance 238
10.4 LR CIRCUITS 241
10.5 MAXWELL’S EQUATIONS AND ELECTROMAGNETIC WAVES 244
10.5.1 Accelerating Charges Produce Electromagnetic Waves 244
10.5.2 Maxwell’s Equations 245
10.6 THE ELECTROMAGNETIC SPECTRUM 245
10.6.1 Visible Light 246
10.6.2 Infrared 246
10.6.3 Ultraviolet 247
10.6.4 Radio Waves 248
10.6.5 Microwaves 248
10.6.6 X-Rays and Gamma Rays 249
Chapter 11 Geometric Optics 253
11.1 THE FORMATION OF IMAGES THROUGH REFLECTION OR REFRACTION 253
11.1.1 Real and Virtual Images 253
11.1.2 Plane Mirrors 254
11.2 SPHERICAL MIRRORS 254
11.2.1 Convex Spherical Mirror 254
11.2.2 Concave Spherical Mirror 256
11.3 THIN LENSES 256
11.3.1 Focal Points and Principal Rays 257
11.3.2 The Magnification and Thin Lens Equations 258
11.4 LENSES IN COMBINATION 260
11.4.1 Ray Diagrams for Two Lenses 260
11.4.2 Transverse Magnification 261
11.5 THE EYE 263
11.5.1 Accommodation 264
11.5.2 Application: Correcting Myopia 264
11.5.3 Application: Correcting Hyperopia 265
11.6 COMPOUND MICROSCOPES AND ABERRATIONS OF LENSES AND MIRRORS 268
11.6.1 Compound Microscope 268
11.6.2 The Transmission Electron Microscope 269
11.6.3 Aberrations of Lenses and Mirrors 270
Chapter 12 Wave Properties of Light 275
12.1 HUYGENS’S PRINCIPLE 275
12.1.1 Sources of Light 275
12.1.2 Wavefronts and Rays 275
12.1.3 Huygens’s Principle 276
12.2 CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE 277
12.2.1 Coherent and Incoherent Sources 277
12.2.2 Interference of Two Coherent Waves 278
12.2.3 Phase Difference due to Different Paths 279
12.3 THIN FILM 281
12.3.1 Phase Shifts due to Reflection 282
12.3.2 Problem-Solving Strategy for Thin Films 283
12.3.3 Thin Films of Air 284
12.4 YOUNG’S DOUBLE-SLIT EXPERIMENT 287
12.5 GRATINGS 290
12.6 DIFFRACTION AND RESOLUTION OF OPTICAL INSTRUMENTS 293
12.6.1 Diffraction by a Single Slit 293
12.6.2 Diffraction and Resolution of Optical Instruments 296
12.7 X-RAY DIFFRACTION 299
12.8 POLARIZATION 300
12.8.1 Linear Polarization 300
12.8.2 Circular Polarization 302
12.8.3 Polarizers 302
12.8.4 Polarization by Scattering 304
12.8.5 Polarization by Reflection 308
Chapter 13 THE BASIS OF QUANTUM MECHANICS 313
13.1 QUANTIZATION 313
13.2 BLACKBODY RADIATION 314
13.3 THE PHOTOELECTRIC EFFECT 315
13.3.1 Experimental Results 315
13.3.2 The Photon 316
13.3.3 The Electron-Volt 318
13.3.4 The Photon Theory Explains the Photoelectric Effect 318
13.3.5 Applications of the Photoelectric Effect 319
13.4 X-RAY PRODUCTION 319
13.5 COMPTON SCATTERING 321
13.6 THE WAVE-PARTICLE DUALITY AND MATTER WAVES 323
13.6.1 Double-Slit Interference Experiment 323
13.6.2 Matter Waves 324
13.6.3 Matter Waves and Probability 327
13.7 ELECTRON MICROSCOPES 327
13.8 THE UNCERTAINTY PRINCIPLE 329
13.8.1 Position-momentum uncertainty principle 329
13.8.2 Energy-Time Uncertainty Principle 331
Chapter 14 Nuclear Physics 335
14.1 NUCLEAR STRUCTURE AND BINDING ENERGY 335
14.1.1 Nuclear Structure 335
14.1.2 Sizes of Nuclei 336
14.1.3 Binding Energy 337
14.1.4 Binding Energy and Mass Defect 338
14.1.5 Nuclear Energy Levels 340
14.2 RADIOACTIVITY 341
14.2.1 Conservation Laws in Radioactive Decay 342
14.2.2 Alpha Decay 343
14.2.3 Beta Decay 344
14.2.4 Gamma Decay 346
14.2.5 Other Radioactive Decay Modes 347
14.3 RADIOACTIVE DECAY RATES AND HALF-LIVES 347
14.3.1 Radioactivity Decay Law 347
14.3.2 Application: Radiocarbon Dating 349
14.4 BIOLOGICAL EFFECTS OF RADIATION 351
14.4.1 Radiation Dose 351
14.4.2 Penetration of Radiation 354
14.4.3 Medical Applications of Radiation 354
Appendix A English-Chinese Index 359
Appendix B Table of Selected Nuclides 363
Answers to Problems 366
- 《新编高中物理竞赛教程习题全解》钟小平主编;钟小平,倪国富,曹海奇编写 2019
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《中学物理奥赛辅导:热学 光学 近代物理学》崔宏滨 2012
- 《长江口物理、化学与生态环境调查图集》于非 2019
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《慢性呼吸系统疾病物理治疗工作手册》(荷)瑞克·考斯林克(RikGosselink) 2020
- 《医学物理学》洪洋 2020
- 《初中物理知识地图》赵端旭 2017
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《小牛顿科学故事馆 医学的故事》小牛顿科学教育公司编辑团队 2018
- 《医学物理学》洪洋 2020
- 《中国中心城市可持续交通发展年度报告 2008》江玉林,吴洪洋主编 2008
- 《太阳从南边升起 洪洋蛇口日记》洪洋著 2008
- 《医用物理学实验》洪洋,俞航,李玉生主编 2009
- 《逐日者 杜边纪念文集》洪洋主编 1998
- 《药膳治百病》王者悦,孙洪洋编著 1993
- 《采矿工程毕业设计指导》刘洪洋,艾德春,杨军伟主编 2017
- 《区域降雨型滑坡灾害预警预报》曹洪洋,袁颖,贾磊著 2017
- 《诡影的左手》(英)萨拉·潘特著;洪洋译 2018
- 《医用物理学》鲍修增,洪洋主编 2002
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《《走近科学》精选丛书 中国UFO悬案调查》郭之文 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《中医骨伤科学》赵文海,张俐,温建民著 2017
- 《美国小学分级阅读 二级D 地球科学&物质科学》本书编委会 2016
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《强磁场下的基础科学问题》中国科学院编 2020
- 《小牛顿科学故事馆 进化论的故事》小牛顿科学教育公司编辑团队 2018
- 《小牛顿科学故事馆 医学的故事》小牛顿科学教育公司编辑团队 2018
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019