1数学控制论浅谈&张旭 1
1.1引言 1
1.1.1概述 1
1.1.2控制科学发展简史 2
1.1.3控制科学中的基本问题 4
1.1.4数学控制论 6
1.2有限维系统控制理论 7
1.2.1有限维系统的能控性 7
1.2.2有限维系统的最优控制 9
1.3分布参数系统控制理论 12
1.3.1分布参数系统的能控性 13
1.3.2分布参数系统的最优控制 18
1.4随机有限维系统控制理论 20
1.4.1随机有限维系统的能控性 21
1.4.2随机有限维系统的最优控制 23
1.5随机分布参数系统控制理论 25
1.5.1随机分布参数系统的能控性 26
1.5.2随机分布参数系统的最优控制 29
参考文献 33
2非负曲率流形与Tits几何&方复全 39
2.1非负曲率黎曼流形的主要结构定理 39
2.2非负曲率流形上的反射群 40
2.3极作用 42
2.4极作用和房系统 44
2.5正曲率流形上的极作用 46
参考文献 48
3素数分布与Mobius正交性猜想&刘建亚 50
3.1轨道上的素数分布 50
3.2二次型与高次型 52
3.3 Mobius正交性猜想 53
3.4远端流 55
3.5α非丢番图 57
参考文献 58
4度量黎曼几何之旅&戎小春 黄虹智 60
4.1引言 60
4.2低维Riemann几何 61
4.3经典比较Riemann几何 64
4.3.1截面曲率与距离比较 65
4.3.2 Ricci曲率与体积比较 69
4.4 Gromov-Hausdorff拓扑 71
4.5度量Riemann几何的进展 75
4.5.1截面曲率两边有界与收敛塌缩理论 75
4.5.2截面曲率有下界与Alexandrov几何 77
4.5.3 Ricci曲率有下界与Cheeger-Colding理论 78
参考文献 81
5局部指标理论简介&张伟平 84
5.1指标定理简介 84
5.1.1从三角形到流形 84
5.1.2 Gauss-Bonnet-Chern定理与Chern-Weil理论 88
5.1.3 Hirzebruch符号差定理与Hirzebruch-Riemann-Roch定理 91
5.1.4 Atiyah-Singer指标定理 93
5.1.5 McKean-Singer公式 95
5.2局部指标理论 97
5.2.1局部Gauss-Bonnet-Chern定理 98
5.2.2关于Dirac算子的Atiyah-Singer指标定理 99
5.2.3关于Dirac算子的局部指标定理与η不变量 101
6二维拓扑场理论与镜对称&范辉军 104
6.1前言 104
6.2黎曼面,曲线模空间和Witten猜想 109
6.2.1黎曼面和曲线模空间 109
6.2.2模空间的紧化以及同义映射 111
6.2.3曲线模空间上的同义环和递归关系 113
6.2.4 KdV可积系统 118
6.2.5相交理论与Witten猜想 120
6.2.6带边黎曼面的模空间与开的KdV可积系统 122
6.2.7评论 126
6.3卡-丘(CY)流形之间的镜对称现象 126
6.3.1 Candelas, dela Ossa, Green和 Parks的发现 126
6.3.2镜像对称的几何构造 128
6.3.3 Strominger-Yau-Zaslow镜像对称猜想 142
6.3.4非卡-丘模型的SYZ猜想 146
6.4辛几何与伪全纯曲线模空间(A模型1) 146
6.4.1稳定映射的模空间与Gromov-Witten不变量 146
6.4.2 Kontsevich-Manin公理化体系 149
6.4.3 WDVV方程和量子乘法 151
6.5复结构形变理论(B模型1) 160
6.5.1一般复流形的形变理论 160
6.5.2卡-丘流形的形变 164
6.5.3紧Kahler流形上Hodge结构的形变与周期域 166
6.5.4三维卡-丘流形上的特殊几何和tt*方程 169
6.5.5 DGBV代数与Frobenius流形 174
6.5.6复结构形变的量子化方法 185
6.6朗道-金兹堡(LG)模型与更一般的镜对称现象 199
6.7上同调场论 202
6.8关于奇点的Saito-Givental量子化理论(B模型2) 203
6.8.1经典的奇点理论 203
6.8.2 Saito平坦结构理论 204
6.8.3本原形式的扰动计算方法 210
6.8.4 Givental形式量子化 213
6.9 FJRW理论(量子奇点理论)(A模型2) 229
6.9.1状态空间 229
6.9.2虚拟基本圈的构造和穿墙现象 231
6.9.3 FJRW理论的公理体系 236
6.10 ADE情形广义Witten猜想的解决和整体的镜对称猜想 239
6.11微分几何途径:Schroedinger方程与LG模型的Hodge理论 241
6.11.1截面-丛系统中的微分算子与超对称代数结构 242
6.11.2谱理论,Hodge定理和Hard Lefschetz定理 242
6.11.3 L2-?f-上同调群的计算 244
6.11.4超位势的形变理论与稳定性定理 244
6.11.5 tt*几何结构 245
6.11.6 tt*几何与Frobenius流形结构(当?→0时) 250
6.11.7进一步的发展 252
6.12开弦理论简介 252
6.12.1拉格朗日相交的Floer理论 253
6.12.2 Fukaya范畴 260
6.12.3 B理论的范畴化 268
6.12.4同调镜像对称猜想 277
6.12.5进一步的问题 282
6.13统一理论:规范线性西格玛模型 283
参考文献 289
7拓扑量子态与拓扑电子材料&方忠 307
7.1简介 307
7.1.1对称性与物态 308
7.1.2准粒子与能带 309
7.1.3拓扑量子态 311
7.2拓扑不变量 313
7.2.1动量空间 313
7.2.2联络与曲率 315
7.2.3陈数 317
7.2.4 Z2不变量 318
7.2.5磁单极 318
7.3拓扑量子态 319
7.3.1整数量子霍尔效应(IQHE)/量子反常霍尔效应(QAHE) 320
7.3.2量子自旋霍尔效应(QSHE) 321
7.3.3拓扑绝缘体 321
7.3.4拓扑金属/半金属 322
7.4拓扑材料 323
7.4.1反带机制 323
7.4.2二维拓扑绝缘体:HgTe量子阱 324
7.4.3三维拓扑绝缘体Bi2Se3、Bi2Te3、Sb2Te3家族 325
7.4.4量子化反常霍尔效应 326
7.4.5 Weyl半金属 326
7.4.6 Dirac半金属 327
7.5总结 328
参考文献 328