Part 1 基于横观各向同性的沥青路面设计理论及应用 栗振锋 3
第1章 绪论 3
1.1 问题的提出 3
1.2 现阶段的研究 3
1.3 Part 1研究概述 4
第2章 现行柔性路面设计理论及方法 6
2.1 路面设计理论 6
2.2 路面结构分析和计算程序 19
2.3 我国柔性路面设计理论 21
2.4 我国柔性路面设计新指标的构建和讨论 22
第3章 计算理论及方法 25
3.1 弹性力学的基本方程 25
3.2 状态空间的基本理论 32
第4章 轴对称横观各向同性层状弹性体系半空间问题 36
4.1 状态方程的推导 36
4.2 状态方程解的讨论 38
4.3 状态转移矩阵的求解 39
4.4 多层弹性体系的解法探讨 41
4.5 可蜕化为各向同性体的解 41
4.6 小结 41
第5章 轴对称横观各向同性半无限体表面位移的解及影响因素分析 42
5.1 轴对称横观各向同性半无限体表面位移的求解 42
5.2 可蜕化为轴对称各向同性半无限体表面位移的解 44
5.3 与已有解的对比 44
5.4 影响因素的分析 45
5.5 小结 48
第6章 轴对称横观各向同性半无限体的通解及应用 50
6.1 轴对称横观各向同性半空间体一般解的Hankel变换式 50
6.2 轴对称横观各向同性半空间体一般解 53
6.3 可化简为任意轴对称荷载作用下的“布辛尼斯克解” 55
6.4 半无限体表面位移的显式 57
6.5 半无限体理论的应用——弯沉盆分析 58
第7章 基于横观各向同性的多层体系计算理论及ANISOLAYER程序编制 61
7.1 轴对称横观各向同性多层体系初始值解的研究 61
7.2 轴对称横观各向同性多层体系的理论解 64
7.3 程序ANISOLAYER编制及与已有解的对比 67
7.4 小结 73
第8章 基于横观各向同性的我国半刚性路面结构分析 75
8.1 路面材料横观各向同性的研究 75
8.2 半刚性路面路表弯沉分析 76
8.3 半刚性路面结构分析 77
第9章 基于横观各向同性的碎石基层路面结构分析 81
9.1 问题的提出 81
9.3 粒状类材料横观各向同性参数的影响因素分析 82
9.2 路面材料特性的主要测试仪器 82
9.4 碎石类基层路表弯沉分析 83
9.5 碎石类基层路面结构分析 84
第10章 考虑土基横观各向同性特性的半刚性路面结构设计 89
10.1 路面模型 89
10.2 轴载换算 89
10.3 设计指标 91
10.4 考虑土基横观各向同性特性的路面厚度设计诺谟图 94
10.5 考虑土基横观各向同性特性的ANISOLAYER程序设计 95
10.7 小结 98
10.6 山西省大运二级路弯沉调查及理论方法验证 98
第11章 考虑土基和碎石基层横观各向同性特性的路面结构设计 100
11.1 路面模型 100
11.2 设计指标 100
11.3 考虑土基和碎石基层横观各向同性特性的路面厚度设计诺谟图 100
11.4 考虑土基和碎石基层横观各向同性特性的ANISOLAYER程序设计 101
11.5 小结 104
12.1 主要结论 105
第12章 主要结论和建议 105
12.2 进一步研究的建议 106
参考文献 107
Part 2 Laboratory and Field Validations of the Cross-Anisotropic Behavior of Unbound Aggregate Bases Erol TutumluerINTRODUCTION 111
SUMMARY OF RESEARCH EFFORTS IN STRUCTURAL CHARACTERIZATION OF UABS 112
ORGANIZATION 115
LABORATORY DETERMINATION OF ANISOTROPIC AGGREGATE MODULI 118
PREVIOUS LABORATORY STUDIES ON CROSS-ANISOTROPY 119
UNIVERSITY OF ILLINOIS FASTCELL(UI-FC)-DESCRIPTION AND CAPABILITIES 120
Material Selection and Properties 122
MATERIALS TESTED 122
LIST OF FIGURES 122
Figure 1 University of Illinois FastCell(UI-FC)advanced triaxial testing device 122
LIST OF TABLES 123
Figure 2 Gradation curves for the four aggregates tested 123
Table 1 Compaction properties of the four aggregates tested 123
Sample Preparation 124
RESILIENT MODULUS TESTING 124
Table 2 Test procedures and stress states applied on aggregate samples 125
INTERPRETATION OF TEST RESULTS 126
Resilient Moduli from UI-FC Triaxial Testing 126
Validation of Testing Approach 126
Figure 3 Variation of vertical and horizontal moduli with deviator stress for an isotropic synthetic specimen 127
Anisotropy of Aggregate Moduli 127
Figure 4 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CA-6 128
Figure 5 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CA-11 129
Figure 6 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CL-3sp 129
Effects of Different Procedures on Anisotropic Moduli 129
Figure 7 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for pea gravel 130
SUMMARY OF LABORATORY FINDINGS ON ANISOTROPY 130
GT-PAVE FINITE ELEMENT PROGRAM 132
FIELD VALIDATIONS WITH FULL-SCALE PAVEMENT TEST SECTIONS 132
Figure 8 Resilient modulus search technique using secant stiffnesses for the stress hardening granular material behavior 134
Nonlinear Solution Technique 134
GEORGIA TECH FULL-SCALE PAVEMENT TEST STUDY 135
Table 3 The geometry and performance summary of GA tech pavement test sections(after Barksdale and Todres,1983) 136
Table 4 Aggregate gradations and material properties used in flexible pavement test sections 137
Test Section Construction 137
Performance of the Test Sections 138
Table 5 Detailed summary of resilient test section response 139
LABORATORY EVALUATION OF NORCROSS CRUSHED STONE AT THE UNIVERSITY OF ILLINOIS 139
Material Properties 139
Figure 9 Gradation curves for norcross crushed stone and other GA tech base materials 140
Table 6 Modified proctor(AASHTO T-180)properties of GA tech base course aggregates 140
Table 7 Achieved dry densities and moisture contents for all modulus test samples 141
Resilient Modulus Testing 141
Table 8 Model parameters for vertical moduli:ICAR protocol and AASHTO T294-94 or the new AASHTO T307-99 stress state tests 142
Figure 10 Variations of vertical moduli with deviator stresses from AASHTO T294-94 or the new AASHTO T307-99 stress state tests 142
Figure 12 Typical cross sections of GA tech pavement test sections 143
MODELING OF GA TECH PAVEMENT TEST SECTIONS 143
Figure 11 K-θ Models showing variation of vertical moduli with bulk stresses 143
Material Properties Assigned In the Early Work by Tutumluer(1995) 144
Table 9 Material properties and model parameters used in modeling pavement test section response(after Tutumluer,1995) 145
Table 10 Comparison of predicted and measured response variables(after Tutumluer,1995) 146
Test Section Resilient Response Predictions by Tutumluer(1995) 146
Table 11 Linear elastic base properties used in modeling pavement test section response 147
Test Section Response Predictions From Linear Elastic Analyses 147
Table 12 Comparison of predicted and measured response variables for conventional pavement sections-linear elastic analyses 148
Table 13 Comparison of predicted and measured response variables for inverted pavement sections-linear elastic analyses 148
Test Section Response Predictions From Nonlinear Isotropic Analyses 149
Table 14 Isotropic model parameters used in modeling pavement test section response 149
Table 16 Comparison of predicted and measured response variables for inverted pavement sections-nonlinear isotropic 150
Table 15 Comparison of predicted and measured response variables for conventional pavement sections-nonlinear isotropic 150
Test Section Response Predictions From Nonlinear Anisotropic Analyses 151
Table 17 Anisotropic model parameters used in modeling pavement test section response 152
Figure 13 Variation of constant ratios in horizontal and shear stiffness ratio models(after Tutumluer and Thompson,1998) 153
Figure 15 Variation of stress exponents in the shear stiffness ratio model(after Tutumluer and Thompson,1998) 154
Figure 14 Variation of stress exponents in the horizontal stiffness ratio model(after Tutumluer and Thompson,1998) 154
Table 18 Comparison of predicted and measured response variables for conventional pavement sections-nonlinear anisotropic 155
Table 19 Comparison of predicted and measured response variables for inverted pavement sections-nonlinear anisotropic 156
Figure 16 Vertical modulus distribution within the base predicted by Texas-3 model 157
Stress States from Anisotropic Modeling 158
Figure 17 Modular ratio(M?/M?)distribution within the base predicted by Texas-3 model 158
Figure 18 Vertical modulus distribution within the base predicted by AASHTO T294-94 model 158
Figure 19 Distribution of centerline radial stresses within the base predicted by different analyses 159
SUMMARY AND CONCLUSIONS 161
LABORATORY DETERMINATION OF ANISOTROPIC AGGREGATE MODULI 161
FIELD VALIDATIONS WITH FULL-SCALE PAVEMENT TEST SECTIONS 162
RESEARCH NEEDS FOR IMPLEMENTATION 165
REFERENCES 167