当前位置:首页 > 交通运输
基于横观各向同性的沥青路面设计理论及方法
基于横观各向同性的沥青路面设计理论及方法

基于横观各向同性的沥青路面设计理论及方法PDF电子书下载

交通运输

  • 电子书积分:9 积分如何计算积分?
  • 作 者:栗振锋 Erol Tutumlure著
  • 出 版 社:北京:中国水利水电出版社
  • 出版年份:2007
  • ISBN:7508443284
  • 页数:169 页
图书介绍:第一部分主要由基于横观各向同性的半空间体理论、多层弹性体系理论、沥青路面结构计算与分析程序、考虑路基路面材料横观各向同性特性沥青路面结构设计与分析等组成,第二部分为Erol Tutumluer博士主要从未粘结粒料基层(UAB)横观各向同性特性参数试验仪器的研制、室内试验验证、参数影响因素分析、实体工程的验证等方面进行了较为系统的研究与分析。本书可供道路工程及相关学科的教师和研究生以及有关的研究人员和工程技术人员作参考。
《基于横观各向同性的沥青路面设计理论及方法》目录

Part 1 基于横观各向同性的沥青路面设计理论及应用 栗振锋 3

第1章 绪论 3

1.1 问题的提出 3

1.2 现阶段的研究 3

1.3 Part 1研究概述 4

第2章 现行柔性路面设计理论及方法 6

2.1 路面设计理论 6

2.2 路面结构分析和计算程序 19

2.3 我国柔性路面设计理论 21

2.4 我国柔性路面设计新指标的构建和讨论 22

第3章 计算理论及方法 25

3.1 弹性力学的基本方程 25

3.2 状态空间的基本理论 32

第4章 轴对称横观各向同性层状弹性体系半空间问题 36

4.1 状态方程的推导 36

4.2 状态方程解的讨论 38

4.3 状态转移矩阵的求解 39

4.4 多层弹性体系的解法探讨 41

4.5 可蜕化为各向同性体的解 41

4.6 小结 41

第5章 轴对称横观各向同性半无限体表面位移的解及影响因素分析 42

5.1 轴对称横观各向同性半无限体表面位移的求解 42

5.2 可蜕化为轴对称各向同性半无限体表面位移的解 44

5.3 与已有解的对比 44

5.4 影响因素的分析 45

5.5 小结 48

第6章 轴对称横观各向同性半无限体的通解及应用 50

6.1 轴对称横观各向同性半空间体一般解的Hankel变换式 50

6.2 轴对称横观各向同性半空间体一般解 53

6.3 可化简为任意轴对称荷载作用下的“布辛尼斯克解” 55

6.4 半无限体表面位移的显式 57

6.5 半无限体理论的应用——弯沉盆分析 58

第7章 基于横观各向同性的多层体系计算理论及ANISOLAYER程序编制 61

7.1 轴对称横观各向同性多层体系初始值解的研究 61

7.2 轴对称横观各向同性多层体系的理论解 64

7.3 程序ANISOLAYER编制及与已有解的对比 67

7.4 小结 73

第8章 基于横观各向同性的我国半刚性路面结构分析 75

8.1 路面材料横观各向同性的研究 75

8.2 半刚性路面路表弯沉分析 76

8.3 半刚性路面结构分析 77

第9章 基于横观各向同性的碎石基层路面结构分析 81

9.1 问题的提出 81

9.3 粒状类材料横观各向同性参数的影响因素分析 82

9.2 路面材料特性的主要测试仪器 82

9.4 碎石类基层路表弯沉分析 83

9.5 碎石类基层路面结构分析 84

第10章 考虑土基横观各向同性特性的半刚性路面结构设计 89

10.1 路面模型 89

10.2 轴载换算 89

10.3 设计指标 91

10.4 考虑土基横观各向同性特性的路面厚度设计诺谟图 94

10.5 考虑土基横观各向同性特性的ANISOLAYER程序设计 95

10.7 小结 98

10.6 山西省大运二级路弯沉调查及理论方法验证 98

第11章 考虑土基和碎石基层横观各向同性特性的路面结构设计 100

11.1 路面模型 100

11.2 设计指标 100

11.3 考虑土基和碎石基层横观各向同性特性的路面厚度设计诺谟图 100

11.4 考虑土基和碎石基层横观各向同性特性的ANISOLAYER程序设计 101

11.5 小结 104

12.1 主要结论 105

第12章 主要结论和建议 105

12.2 进一步研究的建议 106

参考文献 107

Part 2 Laboratory and Field Validations of the Cross-Anisotropic Behavior of Unbound Aggregate Bases Erol TutumluerINTRODUCTION 111

SUMMARY OF RESEARCH EFFORTS IN STRUCTURAL CHARACTERIZATION OF UABS 112

ORGANIZATION 115

LABORATORY DETERMINATION OF ANISOTROPIC AGGREGATE MODULI 118

PREVIOUS LABORATORY STUDIES ON CROSS-ANISOTROPY 119

UNIVERSITY OF ILLINOIS FASTCELL(UI-FC)-DESCRIPTION AND CAPABILITIES 120

Material Selection and Properties 122

MATERIALS TESTED 122

LIST OF FIGURES 122

Figure 1 University of Illinois FastCell(UI-FC)advanced triaxial testing device 122

LIST OF TABLES 123

Figure 2 Gradation curves for the four aggregates tested 123

Table 1 Compaction properties of the four aggregates tested 123

Sample Preparation 124

RESILIENT MODULUS TESTING 124

Table 2 Test procedures and stress states applied on aggregate samples 125

INTERPRETATION OF TEST RESULTS 126

Resilient Moduli from UI-FC Triaxial Testing 126

Validation of Testing Approach 126

Figure 3 Variation of vertical and horizontal moduli with deviator stress for an isotropic synthetic specimen 127

Anisotropy of Aggregate Moduli 127

Figure 4 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CA-6 128

Figure 5 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CA-11 129

Figure 6 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for CL-3sp 129

Effects of Different Procedures on Anisotropic Moduli 129

Figure 7 Variation of vertical and horizontal moduli with deviator stress from two different test procedures for pea gravel 130

SUMMARY OF LABORATORY FINDINGS ON ANISOTROPY 130

GT-PAVE FINITE ELEMENT PROGRAM 132

FIELD VALIDATIONS WITH FULL-SCALE PAVEMENT TEST SECTIONS 132

Figure 8 Resilient modulus search technique using secant stiffnesses for the stress hardening granular material behavior 134

Nonlinear Solution Technique 134

GEORGIA TECH FULL-SCALE PAVEMENT TEST STUDY 135

Table 3 The geometry and performance summary of GA tech pavement test sections(after Barksdale and Todres,1983) 136

Table 4 Aggregate gradations and material properties used in flexible pavement test sections 137

Test Section Construction 137

Performance of the Test Sections 138

Table 5 Detailed summary of resilient test section response 139

LABORATORY EVALUATION OF NORCROSS CRUSHED STONE AT THE UNIVERSITY OF ILLINOIS 139

Material Properties 139

Figure 9 Gradation curves for norcross crushed stone and other GA tech base materials 140

Table 6 Modified proctor(AASHTO T-180)properties of GA tech base course aggregates 140

Table 7 Achieved dry densities and moisture contents for all modulus test samples 141

Resilient Modulus Testing 141

Table 8 Model parameters for vertical moduli:ICAR protocol and AASHTO T294-94 or the new AASHTO T307-99 stress state tests 142

Figure 10 Variations of vertical moduli with deviator stresses from AASHTO T294-94 or the new AASHTO T307-99 stress state tests 142

Figure 12 Typical cross sections of GA tech pavement test sections 143

MODELING OF GA TECH PAVEMENT TEST SECTIONS 143

Figure 11 K-θ Models showing variation of vertical moduli with bulk stresses 143

Material Properties Assigned In the Early Work by Tutumluer(1995) 144

Table 9 Material properties and model parameters used in modeling pavement test section response(after Tutumluer,1995) 145

Table 10 Comparison of predicted and measured response variables(after Tutumluer,1995) 146

Test Section Resilient Response Predictions by Tutumluer(1995) 146

Table 11 Linear elastic base properties used in modeling pavement test section response 147

Test Section Response Predictions From Linear Elastic Analyses 147

Table 12 Comparison of predicted and measured response variables for conventional pavement sections-linear elastic analyses 148

Table 13 Comparison of predicted and measured response variables for inverted pavement sections-linear elastic analyses 148

Test Section Response Predictions From Nonlinear Isotropic Analyses 149

Table 14 Isotropic model parameters used in modeling pavement test section response 149

Table 16 Comparison of predicted and measured response variables for inverted pavement sections-nonlinear isotropic 150

Table 15 Comparison of predicted and measured response variables for conventional pavement sections-nonlinear isotropic 150

Test Section Response Predictions From Nonlinear Anisotropic Analyses 151

Table 17 Anisotropic model parameters used in modeling pavement test section response 152

Figure 13 Variation of constant ratios in horizontal and shear stiffness ratio models(after Tutumluer and Thompson,1998) 153

Figure 15 Variation of stress exponents in the shear stiffness ratio model(after Tutumluer and Thompson,1998) 154

Figure 14 Variation of stress exponents in the horizontal stiffness ratio model(after Tutumluer and Thompson,1998) 154

Table 18 Comparison of predicted and measured response variables for conventional pavement sections-nonlinear anisotropic 155

Table 19 Comparison of predicted and measured response variables for inverted pavement sections-nonlinear anisotropic 156

Figure 16 Vertical modulus distribution within the base predicted by Texas-3 model 157

Stress States from Anisotropic Modeling 158

Figure 17 Modular ratio(M?/M?)distribution within the base predicted by Texas-3 model 158

Figure 18 Vertical modulus distribution within the base predicted by AASHTO T294-94 model 158

Figure 19 Distribution of centerline radial stresses within the base predicted by different analyses 159

SUMMARY AND CONCLUSIONS 161

LABORATORY DETERMINATION OF ANISOTROPIC AGGREGATE MODULI 161

FIELD VALIDATIONS WITH FULL-SCALE PAVEMENT TEST SECTIONS 162

RESEARCH NEEDS FOR IMPLEMENTATION 165

REFERENCES 167

返回顶部