第1章 函数 1
1.1 实数 3
练习1.1 6
1.2 函数 8
练习1.2 16
1.3 初等函数 19
练习1.3 24
1.4 建立函数关系举例 26
练习1.4 28
习题1 29
学习指导 31
答案 41
第2章 极限与连续 45
2.1 数列的极限 47
练习2.1 51
2.2 函数的极限 52
练习2.2 59
2.3 两个极限存在定理及其应用 61
练习2.3 69
2.4 无穷小量与无穷大量 70
练习2.4 73
2.5 函数的连续性 74
练习2.5 80
习题2 81
学习指导 83
答案 101
第3章 导数与微分 104
3.1 导数概念 106
练习3.1 115
3.2 求导法 116
练习3.2 125
3.3 微分 127
练习3.3 134
3.4 高阶导数 137
练习3.4 140
习题3 141
学习指导 143
答案 160
第4章 导数的应用 166
4.1 中值定理 168
练习4.1 172
4.2 洛必塔法则 174
练习4.2 179
4.3 函数的单调性和极值 181
练习4.3 192
4.4 泰勒公式 194
练习4.4 198
4.5 曲线的凹凸 200
练习4.5 202
4.6 函数作图 204
练习4.6 208
4.7 弧长微分与曲率 209
练习4.7 212
4.8 切线法解方程 214
练习4.8 217
习题4 217
学习指导 218
答案 238
第5章 不定积分 244
5.1 原函数与不定积分概念 245
练习5.1 253
5.2 换元积分法 255
练习5.2 266
53 分部积分法 269
练习5.3 273
5.4 有理函数积分法 275
练习5.4 279
5.5 积分表的使用 280
练习5.5 281
习题5 282
学习指导 284
答案 312
第6章 定积分及其应用 320
6.1 定积分概念 322
练习6.1 327
6.2 定积分的性质 329
练习6.2 333
6.3 微积分基本定理 334
练习6.3 339
6.4 换元积分法与分部积分法 341
练习6.4 350
6.5 定积分的近似计算 352
练习6.5 353
6.6 定积分的几何应用 354
练习6.6 364
6.7 定积分的物理应用举例 366
练习6.7 369
6.8 广义积分 370
练习6.8 375
习题6 375
学习指导 377
答案 397
附录A 多元函数微分学简介 403
附录B 常用数学公式 421
名词 441