第1章 行列式 1
1.1二、三阶行列式及n阶行列式 1
1.1.1二阶、三阶行列式 1
1.1.2二阶和三阶行列式的关系 3
1.1.3 n阶行列式 5
习题1-1 7
1.2行列式的性质 8
1.3行列式的计算及应用 12
1.3.1行列式的计算 12
1.3.2行列式的应用 17
习题1-3 20
1.4行列式的MATLAB应用 21
1.4.1 MATLAB简介 21
1.4.2行列式的MATLAB应用实例 22
总习题1 25
第2章矩阵 28
2.1矩阵的概念 28
2.1.1引例 28
2.1.2矩阵的定义 29
习题2-1 30
2.2矩阵的运算 30
2.2.1矩阵的加法 30
2.2.2数与矩阵乘法 31
2.2.3矩阵与矩阵的乘法 32
2.2.4矩阵的转置 34
2.2.5方阵的行列式 36
习题2-2 36
2.3逆矩阵 37
2.3.1逆矩阵的定义 37
2.3.2方阵可逆的充分必要条件 37
2.3.3可逆矩阵的运算规律 40
习题2-3 40
2.4矩阵的分块 41
2.4.1分块矩阵 41
2.4.2分块矩阵的运算 43
习题2-4 48
2.5矩阵的MATLAB应用 49
2.5.1矩阵的输入 49
2.5.2一些特殊矩阵的产生 49
2.5.3矩阵中元素的操作及运算 50
总习题2 53
第3章 初等变换与线性方程组 55
3.1初等变换与初等矩阵 55
3.1.1矩阵的初等变换 55
3.1.2矩阵的标准形 55
3.1.3初等矩阵 57
习题3-1 61
3.2矩阵的秩 61
3.2.1矩阵的秩的定义 61
3.2.2用初等变换求矩阵的秩 63
3.2.3矩阵的秩的性质 64
习题3-2 65
3.3齐次线性方程组 65
习题3-3 67
3.4非齐次线性方程组 68
习题3-4 71
3.5初等变换与线性方程组的MATLAB应用 72
3.5.1初等变换的MATLAB应用实例 72
3.5.2线性方程组的MATLAB应用实例 74
总习题3 76
第4章向量空间 78
4.1向量组的线性相关性 78
4.1.1 n维向量 78
4.1.2向量组的线性组合 78
4.1.3线性相关与线性无关 79
习题4-1 81
4.2向量组的秩 81
习题4-2 83
4.3向量空间 83
习题4-3 85
4.4线性方程组解的结构 85
4.4.1齐次线性方程组解的结构 85
4.4.2非齐次线性方程组解的结构 86
习题4-4 88
4.5向量空间的MATLAB应用 88
4.5.1向量组线性相关性及秩的MATLAB应用实例 88
4.5.2方程组解的结构的MATLAB应用实例 89
总习题4 91
第5章 矩阵的特征值与特征向量 93
5.1向量的内积与正交 93
5.1.1向量的内积 93
5.1.2向量正交 94
5.1.3施密特(Schimidt)正交化过程 95
5.1.4正交矩阵 96
习题5-1 97
5.2特征值与特征向量 98
5.2.1特征值与特征向量的概念 98
5.2.2特征值与特征向量的性质 100
习题5-2 102
5.3一般方阵的对角化 102
5.3.1相似矩阵 102
5.3.2方阵的对角化 103
习题5-3 106
5.4实对称矩阵的对角化 106
习题5-4 111
5.5矩阵特征值与特征向量的MATLAB应用 111
5.5.1特征值与特征向量的MATLAB应用实例 111
5.5.2方阵对角化的MATLAB应用实例 113
总习题5 115
第6章 二次型及其标准形 117
6.1二次型与合同变换 117
6.1.1二次型的定义和矩阵表示 117
6.1.2合同变换 118
习题6-1 119
6.2二次型的标准形 119
6.2.1正交变换化二次型为标准形 119
6.2.2配方法化二次型为标准形 122
习题6-2 124
6.3正定二次型 124
习题6-3 126
6.4二次型的MATLAB应用 126
6.4.1正交变换化标准形的MATLAB应用实例 126
6.4.2正定二次型的MATLAB应用实例 127
总习题6 129
习题参考答案与提示附录 148
附录一 线性代数发展简史 148
附录二 一元多项式的一些概念和结论 152