《复分析 第2版》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:(德)费莱塔格著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2014
  • ISBN:9787510077838
  • 页数:533 页
图书介绍:本书是一部讲述经典复分析的综合教程,此处经典的意思是省去了层理论和上同调方法。前四章是对复分析基本结果的集中表述,在这些标准材料之后,作者介绍了椭圆函数和椭圆模函数和这个领域的最漂亮的结果。书中以在解析数论中的应用作为圆满结束,其中有如素数数论这样很吸引人的专题。本书的自称体系,所需要的内容都进行了完整的讲述,几乎不需要预备知识。400多道练习题,大量的题解提示和众多图表,使得这本书成为学习经典复分析入门的教材。

Ⅰ Differential Calculus in the Complex Plane C 9

Ⅰ.1 Complex Numbers 9

Ⅰ.2 Convergent Sequences and Series 24

Ⅰ.3 Continuity 36

Ⅰ.4 Complex Derivatives 42

Ⅰ.5 The CAUCHY-RIEMANN Differential Equations 47

Ⅱ Integral Calculus in the Complex Plane C 69

Ⅱ.1 Complex Line Integrals 70

Ⅱ.2 The CAUCHY Integral Theorem 77

Ⅱ.3 The CAUCHY Integral Formulas 92

Ⅲ Sequences and Series of Analytic Functions,the Residue Theorem 103

Ⅲ.1 Uniform Approximation 104

Ⅲ.2 Power Series 109

Ⅲ.3 Mapping Properties of Analytic Functions 124

Ⅲ.4 Singularities of Analytic Functions 133

Ⅲ.5 LAURENT Decomposition 142

A Appendix to Ⅲ.4 and Ⅲ.5 155

Ⅲ.6 The Residue Theorem 162

Ⅲ.7 Applications of the Residue Theorem 170

Ⅳ Construction of Analytic Functions 191

Ⅳ.1 The Gamma Function 192

Ⅳ.2 The WEIERSTRASS Product Formula 210

Ⅳ.3 The MITTAG-LEFFLER Partial Fraction Decomposition 218

Ⅳ.4 The RIEMANN Mapping Theorem 223

A Appendix:The Homotopieal Version of the CAUCHY Integral Theorem 233

B Appendix:A Homological Version of the CAUCHY Integral Theorem 239

C Appendix:Characterizations of Elementary Domains 244

Ⅴ Elliptic Functions 251

Ⅴ.1 LIOUVILLE's Theorems 252

A Appendix to the Definition of the Period Lattice 259

Ⅴ.2 The WEIERSTRASS ?-function 261

Ⅴ.3 The Field of Elliptic Functions 267

A Appendix to Sect.Ⅴ.3:The Torus as an Algebraic Curve 271

Ⅴ.4 The Addition Theorem 278

Ⅴ.5 Elliptic Integrals 284

Ⅴ.6 ABEL's Theorem 291

Ⅴ.7 The Elliptic Modular Group 301

Ⅴ.8 The Modular Function j 309

Ⅵ Elliptic Modular Forms 317

Ⅵ.1 The Modular Group and Its Fundamental Region 318

Ⅵ.2 The k/12-formula and the Injectivity of the j-function 326

Ⅵ.3 The Algebra of Modular Forms 334

Ⅵ.4 Modular Forms and Theta Series 338

Ⅵ.5 Modular Forms for Congruence Groups 352

A Appendix to Ⅵ.5:The Theta Group 363

Ⅵ.6 A Ring of Theta Functions 370

Ⅶ Analytic Number Theory 381

Ⅶ.1 Sums of Four and Eight Squares 382

Ⅶ.2 DIRICHLET Series 399

Ⅶ.3 DIRICHLET Series with Functional Equations 408

Ⅶ.4 The RIEMANN ζ-function and Prime Numbers 421

Ⅶ.5 The Analytic Continuation of the ζ-function 429

Ⅶ.6 A TAUBERian Theorem 436

Ⅷ Solutions to the Exercises 449

Ⅷ.1 Solutions to the Exercises of Chapter Ⅰ 449

Ⅷ.2 Solutions to the Exercises of Chapter Ⅱ 459

Ⅷ.3 Solutions to the Exercises of Chapter Ⅲ 464

Ⅷ.4 Solutions to the Exercises of Chapter Ⅳ 475

Ⅷ.5 Solutions to the Exercises of Chapter Ⅴ 482

Ⅷ.6 Solutions to the Exercises of Chapter Ⅵ 490

Ⅷ.7 Solutions to the Exercises of Chapter Ⅶ 498

References 509

Symbolic Notations 519