Chapter 1.Polynomials 2
1.1 Continuous Polynomials 2
1.2 Topologies on Spaces of Polynomials 21
1.3 Geometry of Spaces of Polynomials 41
1.4 Exercises 66
1.5 Notes 73
Chapter 2.Duality Theory for Polynomials 84
2.1 Special Spaces of Polynomials and the Approximation Property 84
2.2 Nuclear Spaces 94
2.3 Integral Polynomials and the Radon-Nikod?m Property 104
2.4 Reflexivity and Related Concepts 112
2.5 Exercises 129
2.6 Notes 134
Chapter 3.Holomorphic Mappings between Locally Convex Spaces 144
3.1 Holomorphic Functions 144
3.2 Topologies on Spaces of Holomorphic Mappings 166
3.3 The Quasi-Local Theory of Holomorphic Functions 187
3.4 Polynomials in the Quasi-Local Theory 210
3.5 Exercises 219
3.6 Notes 229
Chapter 4.Decompositions of Holomorphic Functions 245
4.1 Decompositions of Spaces of Holomorphic Functions 245
4.2 ?ω=?δ for Fréchet Spaces 256
4.3 ?b=?ω for Fréchet Spaces 275
4.4 Examples and Counterexamples 287
4.5 Exercises 309
4.6 Notes 313
Chapter 5.Riemann Domains 324
5.1 Holomorphic Germs on a Fréchet Space 324
5.2 Riemann Domains over Locally Convex Spaces 333
5.3 Exercises 384
5.4 Notes 389
Chapter 6.Holomorphic Extensions 398
6.1 Extensions from Dense Subspaces 398
6.2 Extensions from Closed Subspaces 411
6.3 Holomorphic Functions of Bounded Type 424
6.4 Exercises 438
6.5 Notes 442
Appendix.Remarks on Selected Exercises 447
References 485
Index 533