Chapter 1 THERMODYNAMICS 1
1.1 Physical Chemistry 1
1.2 Thermodynamics 3
1.3 Temperature 6
1.4 The Mole 9
1.5 Ideal Gases 10
1.6 Differential Calculus 17
1.7 Equations of State 22
1.8 Integral Calculus 25
1.9 Study Suggestions 30
1.10 Summary 32
Chapter 2 THE FIRST LAW OF THERMODYNAMICS 37
2.1 Classical Mechanics 37
2.2 P-V Work 42
2.3 Heat 46
2.4 The First Law of Thermodynamics 47
2.5 Enthalpy 52
2.6 Heat Capacities 53
2.7 The Joule and Joule-Thomson Experiments 55
2.8 Perfect Gases and the First Law 58
2.9 Calculation of First-Law Quantities 62
2.10 State Functions and Line Integrals 65
2.11 The Molecular Nature of Internal Energy 67
2.12 Problem Solving 70
2.13 Summary 73
Chapter 3 THE SECOND LAW OF THERMODYNAMICS 78
3.1 The Second Law of Thermodynamics 78
3.2 Heat Engines 80
3.3 Entropy 85
3.4 Calculation of Entropy Changes 87
3.5 Entropy,Reversibility,and Irreversibility 93
3.6 The Thermodynamic Temperature Scale 96
3.7 What Is Entropy? 97
3.8 Entropy,Time,and Cosmology 103
3.9 Summary 104
Chapter 4 MATERIAL EQUILIBRIUM 109
4.1 Material Equilibrium 109
4.2 Entropy and Equilibrium 110
4.3 The Gibbs and Helmholtz Energies 112
4.4 Thermodynamic Relations for a System in Equilibrium 115
4.5 Calculation of Changes in State Functions 123
4.6 Chemical Potentials and Material Equilibrium 125
4.7 Phase Equilibrium 129
4.8 Reaction Equilibrium 132
4.9 Entropy and Life 134
4.10 Summary 135
Chapter 5 STANDARD THERMODYNAMIC FUNCTIONS OF REACTION 140
5.1 Standard States of Pure Substances 140
5.2 Standard Enthalpy of Reaction 141
5.3 Standard Enthalpy of Formation 142
5.4 Determination of Standard Enthalpies of Formation and Reaction 143
5.5 Temperature Dependence of Reaction Heats 151
5.6 Use of a Spreadsheet to Obtain a Polynomial Fit 153
5.7 Conventional Entropies and the Third Law 155
5.8 Standard Gibbs Energy of Reaction 161
5.9 Thermodynamics Tables 163
5.10 Estimation of Thermodynamic Properties 165
5.11 The Unattainability of Absolute Zero 168
5.12 Summary 169
Chapter 6 REACTION EQUILIBRIUM IN IDEAL GAS MIXTURES 174
6.1 Chemical Potentials in an Ideal Gas Mixture 175
6.2 Ideal-Gas Reaction Equilibrium 177
6.3 Temperature Dependence of the Equilibrium Constant 182
6.4 Ideal-Gas Equilibrium Calculations 186
6.5 Simultaneous Equilibria 191
6.6 Shifts in Ideal-Gas Reaction Equilibria 194
6.7 Summary 198
Chapter 7 ONE-COMPONENT PHASE EQUILIBRIUM AND SURFACES 205
7.1 The Phase Rule 205
7.2 One-Component Phase Equilibrium 210
7.3 The Clapeyron Equation 214
7.4 Solid-Solid Phase Transitions 221
7.5 Higher-Order Phase Transitions 225
7.6 Surfaces and Nanoparticles 227
7.7 The Interphase Region 227
7.8 Curved Interfaces 231
7.9 Colloids 234
7.10 Summary 237
Chapter 8 REAL GASES 244
8.1 Compression Factors 244
8.2 Real-Gas Equations of State 245
8.3 Condensation 247
8.4 Critical Data and Equations of State 249
8.5 Calculation of Liquid-Vapor Equilibria 252
8.6 The Critical State 254
8.7 The Law of Corresponding States 255
8.8 Differences Between Real-Gas and Ideal-Gas Thermodynamic Properties 256
8.9 Taylor Series 257
8.10 Summary 259
Chapter 9 SOLUTIONS 263
9.1 Solution Composition 263
9.2 Partial Molar Quantities 264
9.3 Mixing Quantities 270
9.4 Determination of Partial Molar Quantities 272
9.5 Ideal Solutions 275
9.6 Thermodynamic Properties of Ideal Solutions 278
9.7 Ideally Dilute Solutions 282
9.8 Thermodynamic Properties of Ideally Dilute Solutions 283
9.9 Summary 287
Chapter 10 NONIDEAL SOLUTIONS 294
10.1 Activities and Activity Coefficients 294
10.2 Excess Functions 297
10.3 Determination of Activities and Activity Coefficients 298
10.4 Activity Coefficients on the Molality and Molar Concentration Scales 305
10.5 Solutions of Electrolytes 306
10.6 Determination of Electrolyte Activity Coefficients 310
10.7 The Debye-Hückel Theory of Electrolyte Solutions 311
10.8 Ionic Association 315
10.9 Standard-State Thermodynamic Properties of Solution Components 318
10.10 Nonideal Gas Mixtures 321
10.11 Summary 324
Chapter 11 REACTION EQUILIBRIUM IN NONIDEAL SYSTEMS 330
11.1 The Equilibrium Constant 330
11.2 Reaction Equilibrium in Nonelectrolyte Solutions 331
11.3 Reaction Equilibrium in Electrolyte Solutions 332
11.4 Reaction Equilibria Involving Pure Solids or Pure Liquids 337
11.5 Reaction Equilibrium in Nonideal Gas Mixtures 340
11.6 Computer Programs for Equilibrium Calculations 340
11.7 Temperature and Pressure Dependences of the Equilibrium Constant 341
11.8 Summary of Standard States 343
11.9 Gibbs Energy Change for a Reaction 343
11.10 Coupled Reactions 345
11.11 Summary 347
Chapter 12 MULTICOMPONENT PHASE EQUILIBRIUM 351
12.1 Colligative Properties 351
12.2 Vapor-Pressure Lowering 351
12.3 Freezing-Point Depression and Boiling-Point Elevation 352
12.4 Osmotic Pressure 356
12.5 Two-Component Phase Diagrams 361
12.6 Two-Component Liquid-Vapor Equilibrium 362
12.7 Two-Component Liquid-Liquid Equilibrium 370
12.8 Two-Component Solid-Liquid Equilibrium 373
12.9 Structure of Phase Diagrams 381
12.10 Solubility 381
12.11 Computer Calculation of Phase Diagrams 383
12.12 Three-Component Systems 385
12.13 Summary 387
Chapter 13 ELECTROCHEMICAL SYSTEMS 395
13.1 Electrostatics 395
13.2 Electrochemical Systems 398
13.3 Thermodynamics of Electrochemical Systems 401
13.4 Galvanic Cells 403
13.5 Types of Reversible Electrodes 409
13.6 Thermodynamics of Galvanic Cells 412
13.7 Standard Electrode Potentials 417
13.8 Liquid-Junction Potentials 421
13.9 Applications of EMF Measurements 422
13.10 Batteries 426
13.11 Ion-Selective Membrane Electrodes 427
13.12 Membrane Equilibrium 429
13.13 The Electrical Double Layer 430
13.14 Dipole Moments and Polarization 431
13.15 Bioelectrochemistry 435
13.16 Summary 436
Chapter 14 KINETIC THEORY OF GASES 442
14.1 Kinetic-Molecular Theory of Gases 442
14.2 Pressure of an Ideal Gas 443
14.3 Temperature 446
14.4 Distribution of Molecular Speeds in an Ideal Gas 448
14.5 Applications of the Maxwell Distribution 457
14.6 Collisions with a Wall and Effusion 460
14.7 Molecular Collisions and Mean Free Path 462
14.8 The Barometric Formula 465
14.9 The Boltzmann Distribution Law 467
14.10 Heat Capacities of Ideal Polyatomic Gases 467
14.11 Summary 469
Chapter 15 TRANSPORT PROCESSES 474
15.1 Kinetics 474
15.2 Thermal Conductivity 475
15.3 Viscosity 479
15.4 Diffusion and Sedimentation 487
15.5 Electrical Conductivity 493
15.6 Electrical Conductivity of Electrolyte Solutions 496
15.7 Summary 509
Chapter 16 REACTION KINETICS 515
16.1 Reaction Kinetics 515
16.2 Measurement of Reaction Rates 519
16.3 Integration of Rate Laws 520
16.4 Finding the Rate Law 526
16.5 Rate Laws and Equilibrium Constants for Elementary Reactions 530
16.6 Reaction Mechanisms 532
16.7 Computer Integration of Rate Equations 539
16.8 Temperature Dependence of Rate Constants 541
16.9 Relation Between Rate Constants and Equilibrium Constants for Composite Reactions 546
16.10 The Rate Law in Nonideal Systems 547
16.11 Unimolecular Reactions 548
16.12 Trimolecular Reactions 550
16.13 Chain Reactions and Free-Radical Polymerizations 551
16.14 Fast Reactions 556
16.15 Reactions in Liquid Solutions 560
16.16 Catalysis 564
16.17 Enzyme Catalysis 568
16.18 Adsorption of Gases on Solids 570
16.19 Heterogeneous Catalysis 575
16.20 Summary 579
Chapter 17 QUANTUM MECHANICS 590
17.1 Blackbody Radiation and Energy Quantization 591
17.2 The Photoelectric Effect and Photons 593
17.3 The Bohr Theory of the Hydrogen Atom 594
17.4 The de Broglie Hypothesis 595
17.5 The Uncertainty Principle 597
17.6 Quantum Mechanics 599
17.7 The Time-Independent Schr?dinger Equation 604
17.8 The Particle in a One-Dimensional Box 606
17.9 The Particle in a Three-Dimensional Box 610
17.10 Degeneracy 612
17.11 Operators 613
17.12 The One-Dimensional Harmonic Oscillator 619
17.13 Two-Particle Problems 621
17.14 The Two-Particle Rigid Rotor 622
17.15 Approximation Methods 623
17.16 Hermitian Operators 627
17.17 Summary 630
Chapter 18 ATOMIC STRUCTURE 637
18.1 Units 637
18.2 Historical Background 637
18.3 The Hydrogen Atom 638
18.4 Angular Momentum 647
18.5 Electron Spin 649
18.6 The Helium Atom and the Spin-Statistics Theorem 650
18.7 Total Orbital and Spin Angular Momenta 656
18.8 Many-Electron Atoms and the Periodic Table 658
18.9 Hartree-Fock and Configuration-Interaction Wave Functions 663
18.10 Summary 666
Chapter 19 MOLECULAR ELECTRONIC STRUCTURE 672
19.1 Chemical Bonds 672
19.2 The Born-Oppenheimer Approximation 676
19.3 The Hydrogen Molecule Ion 681
19.4 The Simple MO Method for Diatomic Molecules 686
19.5 SCF and Hartree-Fock Wave Functions 692
19.6 The MO Treatment of Polyatomic Molecules 693
19.7 The Valence-Bond Method 702
19.8 Calculation of Molecular Properties 704
19.9 Accurate Calculation of Molecular Electronic Wave Functions and Properties 708
19.10 Density-Functional Theory(DFT) 711
19.11 Semiempirical Methods 717
19.12 Performing Quantum Chemistry Calculations 720
19.13 The Molecular-Mechanics(MM)Method 723
19.14 Future Prospects 727
19.15 Summary 727
Chapter 20 SPECTROSCOPY AND PHOTOCHEMISTRY 734
20.1 Electromagnetic Radiation 734
20.2 Spectroscopy 737
20.3 Rotation and Vibration of Diatomic Molecules 743
20.4 Rotational and Vibrational Spectra of Diatomic Molecules 750
20.5 Molecular Symmetry 756
20.6 Rotation of Polyatomic Molecules 758
20.7 Microwave Spectroscopy 761
20.8 Vibration of Polyatomic Molecules 763
20.9 Infrared Spectroscopy 766
20.10 Raman Spectroscopy 771
20.11 Electronic Spectroscopy 774
20.12 Nuclear-Magnetic-Resonance Spectroscopy 779
20.13 Electron-Spin-Resonance Spectroscopy 793
20.14 Optical Rotatory Dispersion and Circular Dichroism 794
20.15 Photochemistry 796
20.16 Group Theory 800
20.17 Summary 811
Chapter 21 STATISTICAL MECHANICS 820
21.1 Statistical Mechanics 820
21.2 The Canonical Ensemble 821
21.3 Canonical Partition Function for a System of Noninteracting Particles 830
21.4 Canonical Partition Function of a Pure Ideal Gas 834
21.5 The Boltzmann Distribution Law for Noninteracting Molecules 836
21.6 Statistical Thermodynamics of Ideal Diatomic and Monatomic Gases 840
21.7 Statistical Thermodynamics of Ideal Polyatomic Gases 851
21.8 Ideal-Gas Thermodynamic Properties and Equilibrium Constants 854
21.9 Entropy and the Third Law of Thermodynamics 858
21.10 Intermolecular Forces 861
21.11 Statistical Mechanics of Fluids 866
21.12 Summary 870
Chapter 22 THEORIES OF REACTION RATES 877
22.1 Hard-Sphere Collision Theory of Gas-Phase Reactions 877
22.2 Potential-Energy Surfaces 880
22.3 Molecular Reaction Dynamics 887
22.4 Transition-State Theory for Ideal-Gas Reactions 892
22.5 Thermodynamic Formulation of TST for Gas-Phase Reactions 902
22.6 Unimolecular Reactions 904
22.7 Trimolecular Reactions 906
22.8 Reactions in Solution 906
22.9 Summary 911
Chapter 23 SOLIDS AND LIQUIDS 913
23.1 Solids and Liquids 913
23.2 Polymers 914
23.3 Chemical Bonding in Solids 914
23.4 Cohesive Energies of Solids 916
23.5 Theoretical Calculation of Cohesive Energies 918
23.6 Interatomic Distances in Crystals 921
23.7 Crystal Structures 922
23.8 Examples of Crystal Structures 928
23.9 Determination of Crystal Structures 931
23.10 Determination of Surface Structures 937
23.11 Band Theory of Solids 939
23.12 Statistical Mechanics of Crystals 941
23.13 Defects in Solids 946
23.14 Liquids 947
23.15 Summary 951
Bibliography 955
Appendix 959
Answers to Selected Problems 961
Index 967