当前位置:首页 > 数理化
物理化学  原书第6版  英文
物理化学  原书第6版  英文

物理化学 原书第6版 英文PDF电子书下载

数理化

  • 电子书积分:25 积分如何计算积分?
  • 作 者:(美)礼维恩(IRAN.LEVINE)著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2012
  • ISBN:9787302307723
  • 页数:993 页
图书介绍:本书主要内容包括:热力学,热力学第一定律,热力学第二定律,物质平衡,反应的标准热力学函数,理想气体混合反应平衡,单组分的相平衡和表面,真实气体,溶液,非理想溶液,非理想体系反应平衡,多组分的相平衡,电化学,气体的动力学理论,传递过程,反应动力学,量子力学,原子结构,分子电子结构,光谱和光化学,统计力学,反应速率理论,固体和液体。
《物理化学 原书第6版 英文》目录
标签:物理 化学

Chapter 1 THERMODYNAMICS 1

1.1 Physical Chemistry 1

1.2 Thermodynamics 3

1.3 Temperature 6

1.4 The Mole 9

1.5 Ideal Gases 10

1.6 Differential Calculus 17

1.7 Equations of State 22

1.8 Integral Calculus 25

1.9 Study Suggestions 30

1.10 Summary 32

Chapter 2 THE FIRST LAW OF THERMODYNAMICS 37

2.1 Classical Mechanics 37

2.2 P-V Work 42

2.3 Heat 46

2.4 The First Law of Thermodynamics 47

2.5 Enthalpy 52

2.6 Heat Capacities 53

2.7 The Joule and Joule-Thomson Experiments 55

2.8 Perfect Gases and the First Law 58

2.9 Calculation of First-Law Quantities 62

2.10 State Functions and Line Integrals 65

2.11 The Molecular Nature of Internal Energy 67

2.12 Problem Solving 70

2.13 Summary 73

Chapter 3 THE SECOND LAW OF THERMODYNAMICS 78

3.1 The Second Law of Thermodynamics 78

3.2 Heat Engines 80

3.3 Entropy 85

3.4 Calculation of Entropy Changes 87

3.5 Entropy,Reversibility,and Irreversibility 93

3.6 The Thermodynamic Temperature Scale 96

3.7 What Is Entropy? 97

3.8 Entropy,Time,and Cosmology 103

3.9 Summary 104

Chapter 4 MATERIAL EQUILIBRIUM 109

4.1 Material Equilibrium 109

4.2 Entropy and Equilibrium 110

4.3 The Gibbs and Helmholtz Energies 112

4.4 Thermodynamic Relations for a System in Equilibrium 115

4.5 Calculation of Changes in State Functions 123

4.6 Chemical Potentials and Material Equilibrium 125

4.7 Phase Equilibrium 129

4.8 Reaction Equilibrium 132

4.9 Entropy and Life 134

4.10 Summary 135

Chapter 5 STANDARD THERMODYNAMIC FUNCTIONS OF REACTION 140

5.1 Standard States of Pure Substances 140

5.2 Standard Enthalpy of Reaction 141

5.3 Standard Enthalpy of Formation 142

5.4 Determination of Standard Enthalpies of Formation and Reaction 143

5.5 Temperature Dependence of Reaction Heats 151

5.6 Use of a Spreadsheet to Obtain a Polynomial Fit 153

5.7 Conventional Entropies and the Third Law 155

5.8 Standard Gibbs Energy of Reaction 161

5.9 Thermodynamics Tables 163

5.10 Estimation of Thermodynamic Properties 165

5.11 The Unattainability of Absolute Zero 168

5.12 Summary 169

Chapter 6 REACTION EQUILIBRIUM IN IDEAL GAS MIXTURES 174

6.1 Chemical Potentials in an Ideal Gas Mixture 175

6.2 Ideal-Gas Reaction Equilibrium 177

6.3 Temperature Dependence of the Equilibrium Constant 182

6.4 Ideal-Gas Equilibrium Calculations 186

6.5 Simultaneous Equilibria 191

6.6 Shifts in Ideal-Gas Reaction Equilibria 194

6.7 Summary 198

Chapter 7 ONE-COMPONENT PHASE EQUILIBRIUM AND SURFACES 205

7.1 The Phase Rule 205

7.2 One-Component Phase Equilibrium 210

7.3 The Clapeyron Equation 214

7.4 Solid-Solid Phase Transitions 221

7.5 Higher-Order Phase Transitions 225

7.6 Surfaces and Nanoparticles 227

7.7 The Interphase Region 227

7.8 Curved Interfaces 231

7.9 Colloids 234

7.10 Summary 237

Chapter 8 REAL GASES 244

8.1 Compression Factors 244

8.2 Real-Gas Equations of State 245

8.3 Condensation 247

8.4 Critical Data and Equations of State 249

8.5 Calculation of Liquid-Vapor Equilibria 252

8.6 The Critical State 254

8.7 The Law of Corresponding States 255

8.8 Differences Between Real-Gas and Ideal-Gas Thermodynamic Properties 256

8.9 Taylor Series 257

8.10 Summary 259

Chapter 9 SOLUTIONS 263

9.1 Solution Composition 263

9.2 Partial Molar Quantities 264

9.3 Mixing Quantities 270

9.4 Determination of Partial Molar Quantities 272

9.5 Ideal Solutions 275

9.6 Thermodynamic Properties of Ideal Solutions 278

9.7 Ideally Dilute Solutions 282

9.8 Thermodynamic Properties of Ideally Dilute Solutions 283

9.9 Summary 287

Chapter 10 NONIDEAL SOLUTIONS 294

10.1 Activities and Activity Coefficients 294

10.2 Excess Functions 297

10.3 Determination of Activities and Activity Coefficients 298

10.4 Activity Coefficients on the Molality and Molar Concentration Scales 305

10.5 Solutions of Electrolytes 306

10.6 Determination of Electrolyte Activity Coefficients 310

10.7 The Debye-Hückel Theory of Electrolyte Solutions 311

10.8 Ionic Association 315

10.9 Standard-State Thermodynamic Properties of Solution Components 318

10.10 Nonideal Gas Mixtures 321

10.11 Summary 324

Chapter 11 REACTION EQUILIBRIUM IN NONIDEAL SYSTEMS 330

11.1 The Equilibrium Constant 330

11.2 Reaction Equilibrium in Nonelectrolyte Solutions 331

11.3 Reaction Equilibrium in Electrolyte Solutions 332

11.4 Reaction Equilibria Involving Pure Solids or Pure Liquids 337

11.5 Reaction Equilibrium in Nonideal Gas Mixtures 340

11.6 Computer Programs for Equilibrium Calculations 340

11.7 Temperature and Pressure Dependences of the Equilibrium Constant 341

11.8 Summary of Standard States 343

11.9 Gibbs Energy Change for a Reaction 343

11.10 Coupled Reactions 345

11.11 Summary 347

Chapter 12 MULTICOMPONENT PHASE EQUILIBRIUM 351

12.1 Colligative Properties 351

12.2 Vapor-Pressure Lowering 351

12.3 Freezing-Point Depression and Boiling-Point Elevation 352

12.4 Osmotic Pressure 356

12.5 Two-Component Phase Diagrams 361

12.6 Two-Component Liquid-Vapor Equilibrium 362

12.7 Two-Component Liquid-Liquid Equilibrium 370

12.8 Two-Component Solid-Liquid Equilibrium 373

12.9 Structure of Phase Diagrams 381

12.10 Solubility 381

12.11 Computer Calculation of Phase Diagrams 383

12.12 Three-Component Systems 385

12.13 Summary 387

Chapter 13 ELECTROCHEMICAL SYSTEMS 395

13.1 Electrostatics 395

13.2 Electrochemical Systems 398

13.3 Thermodynamics of Electrochemical Systems 401

13.4 Galvanic Cells 403

13.5 Types of Reversible Electrodes 409

13.6 Thermodynamics of Galvanic Cells 412

13.7 Standard Electrode Potentials 417

13.8 Liquid-Junction Potentials 421

13.9 Applications of EMF Measurements 422

13.10 Batteries 426

13.11 Ion-Selective Membrane Electrodes 427

13.12 Membrane Equilibrium 429

13.13 The Electrical Double Layer 430

13.14 Dipole Moments and Polarization 431

13.15 Bioelectrochemistry 435

13.16 Summary 436

Chapter 14 KINETIC THEORY OF GASES 442

14.1 Kinetic-Molecular Theory of Gases 442

14.2 Pressure of an Ideal Gas 443

14.3 Temperature 446

14.4 Distribution of Molecular Speeds in an Ideal Gas 448

14.5 Applications of the Maxwell Distribution 457

14.6 Collisions with a Wall and Effusion 460

14.7 Molecular Collisions and Mean Free Path 462

14.8 The Barometric Formula 465

14.9 The Boltzmann Distribution Law 467

14.10 Heat Capacities of Ideal Polyatomic Gases 467

14.11 Summary 469

Chapter 15 TRANSPORT PROCESSES 474

15.1 Kinetics 474

15.2 Thermal Conductivity 475

15.3 Viscosity 479

15.4 Diffusion and Sedimentation 487

15.5 Electrical Conductivity 493

15.6 Electrical Conductivity of Electrolyte Solutions 496

15.7 Summary 509

Chapter 16 REACTION KINETICS 515

16.1 Reaction Kinetics 515

16.2 Measurement of Reaction Rates 519

16.3 Integration of Rate Laws 520

16.4 Finding the Rate Law 526

16.5 Rate Laws and Equilibrium Constants for Elementary Reactions 530

16.6 Reaction Mechanisms 532

16.7 Computer Integration of Rate Equations 539

16.8 Temperature Dependence of Rate Constants 541

16.9 Relation Between Rate Constants and Equilibrium Constants for Composite Reactions 546

16.10 The Rate Law in Nonideal Systems 547

16.11 Unimolecular Reactions 548

16.12 Trimolecular Reactions 550

16.13 Chain Reactions and Free-Radical Polymerizations 551

16.14 Fast Reactions 556

16.15 Reactions in Liquid Solutions 560

16.16 Catalysis 564

16.17 Enzyme Catalysis 568

16.18 Adsorption of Gases on Solids 570

16.19 Heterogeneous Catalysis 575

16.20 Summary 579

Chapter 17 QUANTUM MECHANICS 590

17.1 Blackbody Radiation and Energy Quantization 591

17.2 The Photoelectric Effect and Photons 593

17.3 The Bohr Theory of the Hydrogen Atom 594

17.4 The de Broglie Hypothesis 595

17.5 The Uncertainty Principle 597

17.6 Quantum Mechanics 599

17.7 The Time-Independent Schr?dinger Equation 604

17.8 The Particle in a One-Dimensional Box 606

17.9 The Particle in a Three-Dimensional Box 610

17.10 Degeneracy 612

17.11 Operators 613

17.12 The One-Dimensional Harmonic Oscillator 619

17.13 Two-Particle Problems 621

17.14 The Two-Particle Rigid Rotor 622

17.15 Approximation Methods 623

17.16 Hermitian Operators 627

17.17 Summary 630

Chapter 18 ATOMIC STRUCTURE 637

18.1 Units 637

18.2 Historical Background 637

18.3 The Hydrogen Atom 638

18.4 Angular Momentum 647

18.5 Electron Spin 649

18.6 The Helium Atom and the Spin-Statistics Theorem 650

18.7 Total Orbital and Spin Angular Momenta 656

18.8 Many-Electron Atoms and the Periodic Table 658

18.9 Hartree-Fock and Configuration-Interaction Wave Functions 663

18.10 Summary 666

Chapter 19 MOLECULAR ELECTRONIC STRUCTURE 672

19.1 Chemical Bonds 672

19.2 The Born-Oppenheimer Approximation 676

19.3 The Hydrogen Molecule Ion 681

19.4 The Simple MO Method for Diatomic Molecules 686

19.5 SCF and Hartree-Fock Wave Functions 692

19.6 The MO Treatment of Polyatomic Molecules 693

19.7 The Valence-Bond Method 702

19.8 Calculation of Molecular Properties 704

19.9 Accurate Calculation of Molecular Electronic Wave Functions and Properties 708

19.10 Density-Functional Theory(DFT) 711

19.11 Semiempirical Methods 717

19.12 Performing Quantum Chemistry Calculations 720

19.13 The Molecular-Mechanics(MM)Method 723

19.14 Future Prospects 727

19.15 Summary 727

Chapter 20 SPECTROSCOPY AND PHOTOCHEMISTRY 734

20.1 Electromagnetic Radiation 734

20.2 Spectroscopy 737

20.3 Rotation and Vibration of Diatomic Molecules 743

20.4 Rotational and Vibrational Spectra of Diatomic Molecules 750

20.5 Molecular Symmetry 756

20.6 Rotation of Polyatomic Molecules 758

20.7 Microwave Spectroscopy 761

20.8 Vibration of Polyatomic Molecules 763

20.9 Infrared Spectroscopy 766

20.10 Raman Spectroscopy 771

20.11 Electronic Spectroscopy 774

20.12 Nuclear-Magnetic-Resonance Spectroscopy 779

20.13 Electron-Spin-Resonance Spectroscopy 793

20.14 Optical Rotatory Dispersion and Circular Dichroism 794

20.15 Photochemistry 796

20.16 Group Theory 800

20.17 Summary 811

Chapter 21 STATISTICAL MECHANICS 820

21.1 Statistical Mechanics 820

21.2 The Canonical Ensemble 821

21.3 Canonical Partition Function for a System of Noninteracting Particles 830

21.4 Canonical Partition Function of a Pure Ideal Gas 834

21.5 The Boltzmann Distribution Law for Noninteracting Molecules 836

21.6 Statistical Thermodynamics of Ideal Diatomic and Monatomic Gases 840

21.7 Statistical Thermodynamics of Ideal Polyatomic Gases 851

21.8 Ideal-Gas Thermodynamic Properties and Equilibrium Constants 854

21.9 Entropy and the Third Law of Thermodynamics 858

21.10 Intermolecular Forces 861

21.11 Statistical Mechanics of Fluids 866

21.12 Summary 870

Chapter 22 THEORIES OF REACTION RATES 877

22.1 Hard-Sphere Collision Theory of Gas-Phase Reactions 877

22.2 Potential-Energy Surfaces 880

22.3 Molecular Reaction Dynamics 887

22.4 Transition-State Theory for Ideal-Gas Reactions 892

22.5 Thermodynamic Formulation of TST for Gas-Phase Reactions 902

22.6 Unimolecular Reactions 904

22.7 Trimolecular Reactions 906

22.8 Reactions in Solution 906

22.9 Summary 911

Chapter 23 SOLIDS AND LIQUIDS 913

23.1 Solids and Liquids 913

23.2 Polymers 914

23.3 Chemical Bonding in Solids 914

23.4 Cohesive Energies of Solids 916

23.5 Theoretical Calculation of Cohesive Energies 918

23.6 Interatomic Distances in Crystals 921

23.7 Crystal Structures 922

23.8 Examples of Crystal Structures 928

23.9 Determination of Crystal Structures 931

23.10 Determination of Surface Structures 937

23.11 Band Theory of Solids 939

23.12 Statistical Mechanics of Crystals 941

23.13 Defects in Solids 946

23.14 Liquids 947

23.15 Summary 951

Bibliography 955

Appendix 959

Answers to Selected Problems 961

Index 967

返回顶部