当前位置:首页 > 数理化
模糊集的理论、应用和新观点
模糊集的理论、应用和新观点

模糊集的理论、应用和新观点PDF电子书下载

数理化

  • 电子书积分:13 积分如何计算积分?
  • 作 者:(美)乔治·克勒
  • 出 版 社:北京:北京师范大学出版社
  • 出版年份:2000
  • ISBN:7303052941
  • 页数:358 页
图书介绍:
《模糊集的理论、应用和新观点》目录

PARTI:FUNDAMENTALS 1

CHAPTER1. CLASSICAL SETS VERSRS FUZZY SETS 1

1.1 Introduction 1

1.2 Crisp Sets: Terminology and Notation 6

1.3 Basic Concepts of Fuzzy Sets 10

1.4 Representations of Fuzzy Sets 18

1.5 Extension Principle 22

CHAPTER 2. OPERATIONS ON FUZZY SETS 28

2.1 Fuzzy Complements 28

2.2 Fuzzy Intersecions and Unions 31

2.3 Averaging Operations 35

2.4 Arithmetic Oerations on Fuzzy Numbers 40

CHAPTER 3. FUZZY RELATIONS 50

3.1 Basic Concepts of Fuzzy Relations 50

3.2 Fuzzy Relations on a Single Set 57

3.3 Fuzzy Relation Equations 65

CHAPTER 4.FUZZY LOGIC 69

4.1 Fuzzy Set Theory and Fuzzy logic 69

4.2 Components of Fuzzy Logic 71

4.3 Approximate Reasoning 79

4.4 Fuzzy Logic and Possibility Theory 81

PART II: APPLICATIONS 87

CHAPTER 5. CONSTRUCTING FUZZY SETS 87

CHAPTER 6. FUZZY SYSTEMS 90

CHAPTER 7. FUZZY CONTROL 96

CHAPTER 8 CLUSTERING, PATTERN RECOGNITION,AND IMAGE PROCESSING 109

CHAPTER 9. DECISION MAKING 112

CHAPTER 10. FUZZY INFORMATION AND KNOWLEDGEBASED SYSTEMS 116

CHAPTER 11. ENGINEERING APPLICATIONS 121

CHAPTER 12. OTHER APPLICATIONS 125

BIBLIOGRAPHICAL COMMENTS TO PARTS I II 129

BIBLIOGRPHICAL INDEX TO PARTS I II 135

BIBLIOGRAPHY TO PARTS I II 139

PART III. PERSONAL VIEWS 173

CHAPTER 13.SIGNIFICANCE OF FUZZY SET THEORY 173

CHAPTER 14.FROM CLASSICAL SETS TO FUZZY SETS:A Grand Paradigm Shift 180

14.1. Introduction 180

14.2. What are Scientific Paradigms and Paradigrn Shifts 181

14.3. Characteristics of the New Uncertainty Paradigm 182

14.4. The Role of Uncertainty in Science and Technology 186

14.5. Stages in the Paradigm Shift 195

14.6. Significant Issues of Future Research 203

References 205

CHAPTER 15. MULTIVALUED LOGICS VERSUS MODAL LOGICS: Alternative Frameworks for Uncertainty Modelling 209

15.1. Attitudes Towards Uncertainty 209

15.2. Uncertainty Theories 211

15.3. Uncertainty and Multivalued Logics 213

15.4. Modal Logics:An Overview 218

15.5. Uncertainty and Modal Logics 228

15.6. Conclusions 248

References 250

CHAPTER 16.MODAL LOGIC INTERPRETATION OF POSSIBILITY THEORY 256

16.1. Introduction 256

16.2. Basics of Possibility Theory 257

16.3. Basics of Modal Logic 258

16.4. Interpretation of Possibility Theory 260

16.5. Completeness 264

16.6. Conclusions 268

References 268

CHAPTER 17.FUZZY-SET INTERPRETATION OF POSSIBILITY THEORY 270

17.1. Introduction 270

17.2. Possibility Theory 271

17.3 Possibility Theory and Dempster-Shafer Theory 274

17.4 Standard Fuzzy-Set Interpretation of Possibility Theory 276

17.5 The Issue of Subnormal Fuzzy Sets 278

17.6 Revised Fuzzy-Set Interpretation of Possibility Theory 281

17.7. Conclusions 286

References 287

CHAPTER 18. CONSTRAINED FUZZY ARITHMETIC 290

18.1. Introduction 290

18.2. Standard Fuzzy Arithmetic 292

18.3. Constrained Fuzzy Arithmetic 294

18.4. Requisite Equality Constraints 298

18.5. Other Requisite Constraints 302

18.6. Applications of Fuzzy Atithmetic 305

18.7. Conclusions 309

References 310

CHAPTER 19. UNCERTAINTY AND PROBABILITY: A Debate 315

19.1. Introduction: Setting the Stage 315

19.2. What is Uncertainty 317

19.3. Mathematical Frameworks for Conceptualizing Uncertainty 319

19.4. Measures of Uncertainty 326

19.5. Limitatios of Probability Theory 334

19.6. Examples 346

19.7. Comclusions 352

References 354

相关图书
作者其它书籍
返回顶部