当前位置:首页 > 数理化
纯粹数学与应用数学专著  典藏版  第30号  半鞅与随机分析
纯粹数学与应用数学专著  典藏版  第30号  半鞅与随机分析

纯粹数学与应用数学专著 典藏版 第30号 半鞅与随机分析PDF电子书下载

数理化

  • 电子书积分:17 积分如何计算积分?
  • 作 者:何声武,汪嘉冈,严加安著
  • 出 版 社:北京:科学出版社
  • 出版年份:2018
  • ISBN:7030557544
  • 页数:582 页
图书介绍:
《纯粹数学与应用数学专著 典藏版 第30号 半鞅与随机分析》目录

第一章 预备知识 1

1.单调类定理 3

2.一致可积性 6

3.本质上确界 9

4.条件期望的推广 10

5.解析集与Choquet容度 13

6.Lebesgue-Stieltjes积分 20

问题与补充 23

第二章 经典鞅论 27

1.基本不等式 27

2.收敛定理 36

3.上鞅的分解定理 41

4.Doob停止定理 44

5.连续时间鞅 49

6.独立增量过程 60

问题与补充 70

第三章 过程与停时 75

1.停时 75

2.循序可测、可选与可料过程 81

3.可料时与可及时 87

4.有限变差过程 94

5.时间变换 97

问题与补充 101

第四章 截口定理及其应用 105

1.截口定理 105

2.可料时的a.s.可预报性 111

3.绝不可及时 114

4.完备流与通常条件 118

5.应用于鞅论 123

问题与补充 125

第五章 过程的投影 128

1.可测过程的投影 128

2.增过程的对偶投影 132

3.应用于停时与过程的研究 147

4.Doob-Meyer分解定理 151

5.离散型流 155

问题与补充 169

第六章 可积变差鞅与平方可积鞅 172

1.可积变差鞅 172

2.平方可积鞅 174

3.纯断平方可积鞅的结构 178

4.二次变差过程 183

问题与补充 186

第七章 局部鞅 189

1.过程类的局部化 189

2.局部鞅的分解 194

3.局部鞅的跳过程的刻画 203

问题与补充 206

第八章 半鞅与拟鞅 209

1.半鞅与特殊半鞅 209

2.拟鞅及其Rao分解 213

3.区间型随机集上的半鞅 216

4.半鞅的收敛定理 220

问题与补充 223

第九章 随机积分 227

1.可料过程对局部鞅的随机积分 227

2.循序过程对局部鞅的补偿随机积分 231

3.可料过程对半鞅的随机积分 234

4.Lenglart不等式与随机积分的收敛定理 237

5.It?公式与Doléans-Dade指数公式 242

6.半鞅的局部时 251

7.随机微分方程:Métivier-Pellaumail方法 256

问题与补充 261

第十章 鞅空间?1与??? 266

1.?1鞅和???鞅 266

2.Fefferman不等式 273

3.?1的对偶空间 277

4.Davis不等式 280

5.B-D-G不等式 285

6.鞅空间?P,p>1 290

7.John-Nirenberg不等式 292

问题与补充 295

第十一章 半鞅的特征 298

1.随机测度 298

2.半鞅的积分表示 311

3.Lévy过程 318

4.跳跃过程 328

问题与补充 337

第十二章 测度变换 341

1.局部绝对连续性 341

2.局部鞅和半鞅的Girsanov定理 347

3.随机测度的Girsanov定理 357

4.半鞅的刻画 363

问题与补充 370

第十三章 可料表示性 374

1.强可料表示性 374

2.弱可料表示性 381

3.两类可料表示性间的关系 392

4.Lévy过程的可料表示性 402

问题与补充 406

第十四章 测度的绝对连续性和近邻性 410

1.Hellinger过程 410

2.绝对连续性和奇异性 419

3.近邻性、完全可分离性与变差收敛 428

4.Lévy过程导出的测度 448

问题与补充 456

第十五章 右连左极过程的弱收敛 459

1.D[0,∞[与Skorohod拓扑]] 459

2.Skorohod拓扑下的连续性 474

3.弱收敛与胎紧性 480

4.跳跃过程的弱收敛 492

问题与补充 502

第十六章 半鞅的弱收敛 506

1.收敛于拟左连续半鞅 506

2.收敛于Lévy过程 523

3.收敛于连续Lévy过程 534

4.收敛于广义扩散 545

问题与补充 555

参考文献 559

符号与名词索引 572

相关图书
作者其它书籍
返回顶部