当前位置:首页 > 工业技术
先进纳米薄膜材料-制备方法及应用
先进纳米薄膜材料-制备方法及应用

先进纳米薄膜材料-制备方法及应用PDF电子书下载

工业技术

  • 电子书积分:12 积分如何计算积分?
  • 作 者:林媛,陈新主编
  • 出 版 社:北京:化学工业出版社
  • 出版年份:2017
  • ISBN:9787122291585
  • 页数:309 页
图书介绍:本书主要介绍使用各种先进的薄膜沉积技术来制备各种纳米结构薄膜,并介绍这些制备技术和相关纳米结构薄膜的一些新应用。除传统的薄膜沉积技术以外,本书也将介绍近年来新发展的一些制备技术。具体而言,本书分为两部分:纳米薄膜的制备技术和纳米薄膜材料的新应用。在第一部分即纳米薄膜的制备技术部分,介绍以下纳米薄膜制备技术:电子束沉积、磁控溅射、脉冲激光沉积、液相外延、分子束外延、化学溶液沉积法、化学气相沉积法、原子层沉积、电子束辅助液相外延、激光直写技术、三维打印技术等。在第二部分即纳米薄膜材料的新应用部分,将介绍柔性基底上的纳米结构及器件、纳米薄膜燃料电池、利用纳米表面有序结构调控薄膜性能的方法、利用镶嵌式纳米结构调控薄膜性能的方法等。
《先进纳米薄膜材料-制备方法及应用》目录

1 Pulsed Laser Deposition for Complex Oxide Thin Film and Nanostructure&Chunrui Ma and Chonglin Chen 1

1.1 Introduction 1

1.2 Pulsed Laser Deposition System Setup 2

1.3 Advantages and Disadvantages of Pulsed Laser Deposition 3

1.4 The Thermodynamics and Kinetics of Pulsed Laser Deposition 3

1.4.1 Laser-Material Interactions 4

1.4.2 Dynamics of the Plasma 5

1.4.3 Nucleation and Growth of the Film on the Substrate Surface 5

1.5 Monitoring of Growth Kinetics 8

1.5.1 Introduction and RHEED Studies 8

1.5.2 Growth Kinetics Studies by Surface X-ray Diffraction 9

1.6 Fundamental Parameters in Thin Film Growth 10

1.6.1 Substrate Temperature 10

1.6.2 Background Gas Pressure 10

1.6.3 Laser Fluence and Ablation Area 11

1.6.4 Target-Substrate Distance 11

1.6.5 Post-Annealing 12

1.6.6 Lattice Misfit 12

1.7 Pulsed Laser Deposition for Complex Oxide Thin Film Growth 13

1.7.1 Pulsed Laser Deposition for Superconductor Thin Film 14

1.7.2 Pulsed Laser Deposition for Ferroelectric Thin Films 14

1.7.3 Pulsed Laser Deposition for Ferromagnetic Thin Film 15

1.7.4 Pulsed Laser Deposition for Multiferroics Thin Film 15

1.7.5 Interface Strain Engineering the Complex Oxide Thin Film 16

1.7.5.1 Thickness Effect 16

1.7.5.2 Substrate Effect 17

1.7.5.3 Post-Annealing 21

1.8 Pulsed Laser Deposition for Nanostructure Growth 23

1.8.1 Self-Assembled Nanoscale Structures 23

1.8.2 Geometrically Ordered Arrays 23

1.9 Variation of Pulsed Laser Deposition 24

1.10 Conclusion 24

References 25

2 Electron Beam Evaporation Deposition&Zhongping Wang and Zengming Zhang 33

2.1 Introduction 33

2.2 Electron Beam Evaporation System 35

2.2.1 Heating Principle and Characters of Electron Beams 35

2.2.1.1 Heating Principle of Electron Beams 35

2.2.1.2 Characters of Electron Beams 36

2.2.2 Equipments of Electron Beam Source 37

2.2.2.1 Filament and Electron Emission 37

2.2.2.2 Electron Beam Control 38

2.2.2.3 Power Supply,Crucibles,and Feed Systems 39

2.2.2.4 Source Materials 40

2.2.3 Application of Electron Beam Evaporation 43

2.2.3.1 Cooling of Electron Beam Gun 43

2.2.3.2 Evaporation of Source Materials by Electron Beam 43

2.2.3.3 Vacuum Deposition Process of Electron Beam Evaporation 44

2.2.3.4 Attention and Warning for Electron Beam Evaporation 45

2.3 Characterization of Thin Film 45

2.3.1 Surface Morphology by AFM 46

2.3.2 Thickness Measurement by Spectroscopic Ellipsometry 47

2.4 Summary 53

Acknowledgments 53

References 53

3 Nanostructures and Thin Films Deposited with Sputtering&Weiqing Yang 59

3.1 Introduction 59

3.2 Nanostructures with Sputtering 60

3.2.1 Oxide Nanostructures 61

3.2.1.1 Needle-Shaped MoO3 Nanowires 61

3.2.1.2 Bi2O3 Nanowires 64

3.2.2 Nitride Nanostructures 65

3.2.2.1 Graphitic-C3N4 Nanocone Array 65

3.2.2.2 InAlN Nanorods 68

3.3 Thin Films Deposited with Sputtering 71

3.3.1 Metal Alloy Thin Films 73

3.3.1.1 LaNi5 Alloy Thin Films 73

3.3.1.2 Ni-Mn-In Alloy Thin Films 74

3.3.2 Composite Metal Oxide Thin Films 75

3.3.2.1 BiFeO3/BaTiO3 Bilayer Thin Films 75

3.4 Summary 76

Acknowledgments 77

References 77

4 Nanostructures and Quantum Dots Development with Molecular Beam Epitaxy&Wen Huang 81

4.1 Introduction 81

4.2 Technology of MBE 82

4.2.1 The Physics of MBE 83

4.2.2 MBE Growth Mechanisms 86

4.2.2.1 Two-Dimensional(2D)MBE Growth Mechanism 87

4.2.2.2 Three-Dimensional(3D) MBE Growth Mechanism 88

4.2.2.3 Stranskie-Krastanow 3D Growth Mechanism 90

4.3 Nanoheterostructures Fabricated by Molecular Beam Epitaxy 91

4.3.1 Semiconducting Oxide Heterostructures Grown by Laser Molecular Beam Epitaxy 91

4.3.2 Strain-Induced Magnetic Anisotropy in Highly Epitaxial Heterostructure by LMBE 96

4.4 Quantum Dots Development with Molecular Beam Epitaxy 101

4.5 Summary 103

Acknowledgments 104

References 104

5 Carbon Nanomaterials and 2D Layered Materials Development with Chemical Vapor Deposition&Taisong Pan 105

5.1 Introduction 105

5.2 Carbon Nanotube Synthesis by Chemical Vapor Deposition 106

5.2.1 Overview of CVD Process of Carbon Nanotube Growth 106

5.2.2 Control of Carbon Nanotube Structure 108

5.2.3 The Alignment of Carbon Nanotube Array 110

5.3 Graphene Synthesis by Chemical Vapor Deposition 112

5.3.1 Overview of CVD Process of Graphene Synthesis 112

5.3.2 Control of Graphene Quality 113

5.4 Metal Dichalcogenide Synthesis by Chemical Vapor Deposition 115

5.4.1 Overview of CVD Process of Metal Dichalcogenides 115

5.4.2 Growth Control of Metal Dichalcogenides in Chemical Vapor Deposition 118

5.5 Summary 119

References 120

6 Nanostructures Development with Atomic Layer Deposition&Hulin Zhang 123

6.1 Introduction 123

6.2 Reaction Mechanisms 125

6.2.1 Thermal ALD 125

6.2.2 Catalytic ALD 127

6.2.3 Metal ALD 129

6.3 Nanostructures Based on ALD 131

6.3.1 Nanolaminates and Nanofilms 132

6.3.2 Nanostructures as Templates 132

6.3.3 Nanostructured Modification 135

6.4 Summary 136

Acknowledgments 137

References 138

7 Nanomaterial Development with Liquid-Phase Epitaxy&Weiqing Yang 141

7.1 Introduction 141

7.2 Hvdrothermal Method 142

7.2.1 Development of Hydrothermal Method 142

7.2.2 Microwave-Assisted Hvdrothermal Method 143

7.2.2.1 Microwave-Assisted Preparation of Nanostructures in Aqueous Solution 144

7.3 Nanostructures Fabricated Using LPE 147

7.3.1 Core-Shell Structures 147

7.3.2 The Epitaxial Preparation Methods of Core-Shell Structures 148

7.3.2.1 General Nanochemical Approaches to Prepare Epitaxial Core-Shell UCNPs with a Single Shell Layer 150

7.3.2.2 Layer-by-Layer Approach to Prepare Core-Multishell UCNPs with Monolayer Thickness Precision 153

7.3.2.3 Mesoporous Silica Coating 153

7.3.2.4 Coupling of UCNPs with Plasmonics Using Core-Shell Architecture 154

7.4 Summary 156

Acknowledgments 156

References 156

8 Nanostructural Thin Film Development with Chemical Solution Deposition&Yanda Ji and Yuan Lin 159

8.1 Introduction 159

8.2 Precursor Solution Preparation 159

8.2.1 Chemical Strategies for Precursor Solutions 160

8.2.2 Sol-Gel Method 160

8.2.3 Metal-Organic Deposition 161

8.2.4 polymer-Assisted Deposition 161

8.3 Coating 162

8.4 Thermal Treatment 163

8.5 Control of the Microstructures in Thin Films Prepared by CSD Techniques 164

8.5.1 Thermodynamics for CSD-Delivered Thin Films 164

8.5.2 Epitaxial Thin Film Growth 166

8.6 Examples of Nanostructural Thin Films Prepared by CSD Techniques 167

8.6.1 Sol-Gel-Delivered Nanostructured Materials 167

8.6.2 MOD of Nanostructured Materials 168

8.6.3 PAD-Delivered Nanostructured Materials 168

8.7 Summary 174

References 175

9 Nanomaterial Development Using In Situ Liquid Cell Transmission Electron Microscopy&Xin Chen,Wangfan Zhou,Debiao Xie,and Hongliang Cao 179

9.1 Introduction 179

9.2 The Technological Development of In Situ Liquid Cell TEM 179

9.2.1 The Advent of the Modern In Situ Liquid Cell 180

9.2.2 Recent Technological Development of Liquid Cells 180

9.2.3 Commercial Liquid Cells 183

9.3 Nanomaterial Development Using In Situ Liquid Cell TEM Technology 185

9.3.1 Nanomaterial Growth Induced by Electrical Bias 185

9.3.2 Nanomaterial Growth Induced by Irradiation 187

9.3.3 Nanomaterial Formation Induced by Heating 189

9.3.4 Further Nanomaterial Development Results from In Situ Liquid Cell TEM 190

9.4 Summary and Outlook 191

Acknowledgments 191

References 192

10 Direct-Writing Nanolithography&Min Gao 195

10.1 Introduction 195

10.2 Electron Beam Lithography 195

10.3 Focused Ion Beam Lithography 198

10.4 Gas-Assisted Electron and Ion Beam Lithography 200

10.5 SpM Lithography 201

10.6 Dip-Pen Lithography 205

10.7 Summary 206

Acknowledgments 207

References 207

11 3D Printing of Nanostructures&Min Gao 209

11.1 Introduction 209

11.2 3D Printing Processes 209

11.3 Types of 3D Printing 210

11.3.1 Stereolithography 210

11.3.2 Fused Deposition Modeling 211

11.3.3 Selective Deposition Lamination 212

11.3.4 Selective Laser Sintering 213

11.3.5 3D Inkjet Printing 214

11.3.6 Multijet Modeling 214

11.4 3D Direct Laser Writing by Multiphoton Polymerization 214

11.5 3D Printing Applications 217

11.5.1 Medical Applications 217

11.5.2 Industrial Manufacturing 218

11.5.3 Daily Consumption 219

11.5.4 Limitation of 3D Printing Applications 219

11.6 Summary 219

Acknowledgments 220

References 220

12 Nanostructured Thin Film Solid Oxide Fuel Cells&Alex Ignatiev,Rabi Ebrahim,Mukhtar Yeleuov,Daniel Fisher,Xin Chen,Naijuan Wu,and Serekbol Tokmoldin 223

12.1 Introduction 223

12.2 Solid Oxide Fuel Cells 223

12.2.1 Thin Film Solid Oxide Fuel Cell Fabrication 225

12.2.2 Thin Film Solid Oxide Fuel Cell Testing 231

12.2.3 Thin Film Fuel Cell Stack Development and Testing 234

12.3 Summary 237

Acknowledgments 237

References 237

13 Nanostructured Magnetic Thin Films and Coatings&Goran Rasic 239

13.1 Introduction 239

13.2 High-Frequency Devices 240

13.2.1 Ferromagnets 241

13.2.2 Coercivity 242

13.2.3 Magnetic Losses 243

13.2.4 Nanoscale Methods of Loss Reduction 244

13.2.5 Manufacturing Considerations 244

13.2.6 Coercivity Reduction in Surface-Patterned Magnetic Thin Films 245

13.3 Magnetic Information Storage Devices 251

13.3.1 Superparamagnetic Limit 252

13.3.2 Signal-to-Noise Ratio 253

13.3.3 Present-Day Solutions 253

13.3.4 Bit Patterned Media 254

13.3.5 Manufacturing Considerations 255

13.3.6 Patterned Media for Magnetic Data Storage 256

13.4 Summary 261

Acknowledgments 261

References 262

14 Phase Change Materials for Memory Application&Liangcai Wu and Zhitang Song 267

14.1 Introduction 267

14.2 Ge2Sb2Te5 and Its Properties'Improvement 268

14.2.1 Ge2Sb2Te5 Phase Change Material 268

14.2.2 N-Doped Ge2Sb2Te5 Material 270

14.2.3 C-Doped Ge2Sb2Te5 Material 272

14.2.3.1 Film Properties and Microstructure Characteristics 272

14.2.3.2 Reversible Phase Change Characteristics of C-Doped Ge2Sb2Te5 274

14.3 High-Speed and Lower-Power TiSbTe Materials 277

14.3.1 Film Properties and Microstructure Characteristics 277

14.3.1.1 Ti-Doped Sb2Te Materials 277

14.3.1.2 Ti-Doped Sb2Te3 Materials 278

14.3.2 Reversible Phase Change Characteristics of TST Alloy 280

14.4 Summary 283

Acknowledgments 283

References 283

15 Nanomaterials and Devices on Flexible Substrates&Hulin Zhang 285

15.1 Introduction 285

15.2 Nanomaterials on Flexible Substrates 286

15.2.1 Nanomaterials Synthesized Directly on Flexible Substrates 286

15.2.2 Nanomaterials Transferred on Flexible Substrates 290

15.3 Devices on Flexible Substrates 292

15.3.1 Printing Electronics on Flexible Substrates 293

15.3.2 Biointegrated Electronics on Flexible Substrates 298

15.4 Summary 300

Acknowledgments 301

References 301

Index 305

返回顶部