系统辨识 迭代搜索原理与辨识方法PDF电子书下载
- 电子书积分:14 积分如何计算积分?
- 作 者:丁锋著
- 出 版 社:北京:科学出版社
- 出版年份:2018
- ISBN:9787030584526
- 页数:417 页
第1章 迭代辨识导引 1
1.1 引言 1
1.2 最小二乘原理 3
1.2.1 长度测量问题 3
1.2.2 线性参数拟合 4
1.2.3 最小二乘估计 6
1.3 梯度搜索原理 8
1.3.1 简单迭代算法 8
1.3.2 梯度搜索原理 11
1.4 牛顿搜索原理 12
1.4.1 牛顿方法求方程的根 13
1.4.2 牛顿方法求函数极值 14
1.4.3 牛顿方法的几何解释 15
1.4.4 Gauss-Newton迭代方法 16
1.4.5 Levenberg-Marquardt方法 17
1.5 线性回归系统的辨识方法 18
1.5.1 随机梯度辨识方法 19
1.5.2 递推梯度辨识方法 20
1.5.3 最小二乘辨识算法 23
1.5.4 辨识算法的计算量 26
1.5.5 递推最小二乘算法 27
1.5.6 梯度迭代辨识算法 29
1.5.7 多新息梯度迭代算法 32
1.5.8 变间隔梯度迭代辨识方法 34
1.5.9 变间隔多新息梯度迭代算法 38
1.6 有限脉冲响应滑动平均系统的增广辨识方法 41
1.6.1 增广随机梯度辨识方法 42
1.6.2 递推增广梯度辨识方法 45
1.6.3 递推增广最小二乘算法 47
1.6.4 增广梯度迭代辨识算法 47
1.6.5 增广最小二乘迭代方法 57
1.6.6 多新息增广梯度迭代算法 64
1.6.7 多新息增广最小二乘迭代算法 67
1.7 小结与思考题 69
第2章 方程误差类系统 73
2.1 引言 73
2.2 方程误差系统 75
2.2.1 梯度迭代辨识算法 76
2.2.2 多新息梯度迭代算法 77
2.3 方程误差滑动平均系统 78
2.3.1 增广梯度迭代辨识算法 79
2.3.2 增广最小二乘迭代算法 81
2.3.3 多新息增广梯度迭代方法 82
2.3.4 多新息增广最小二乘迭代算法 84
2.3.5 仿真例子 85
2.4 方程误差自回归系统 85
2.4.1 广义梯度迭代辨识算法 86
2.4.2 广义最小二乘迭代算法 87
2.4.3 多新息广义梯度迭代算法 88
2.4.4 多新息广义最小二乘迭代算法 89
2.5 方程误差自回归滑动平均系统 90
2.5.1 广义增广梯度迭代辨识算法 91
2.5.2 广义增广最小二乘迭代算法 93
2.5.3 多新息广义增广梯度迭代算法 94
2.5.4 多新息广义增广最小二乘迭代算法 96
2.6 小结与思考题 98
第3章 输出误差类系统 102
3.1 引言 102
3.2 输出误差系统 103
3.2.1 辅助模型梯度迭代算法 106
3.2.2 辅助模型最小二乘迭代算法 108
3.2.3 辅助模型多新息梯度迭代算法 109
3.2.4 辅助模型多新息最小二乘迭代算法 111
3.2.5 仿真例子 112
3.3 输出误差滑动平均系统 127
3.3.1 辅助模型增广梯度迭代算法 128
3.3.2 辅助模型增广最小二乘迭代算法 130
3.3.3 辅助模型多新息增广梯度迭代算法 131
3.3.4 辅助模型多新息增广最小二乘迭代算法 134
3.4 输出误差自回归系统 135
3.4.1 辅助模型广义梯度迭代算法 136
3.4.2 辅助模型广义最小二乘迭代算法 138
3.4.3 辅助模型多新息广义梯度迭代算法 139
3.4.4 辅助模型多新息广义最小二乘迭代算法 141
3.5 Box-Jenkins系统 142
3.5.1 辅助模型广义增广梯度迭代算法 144
3.5.2 辅助模型广义增广最小二乘迭代算法 147
3.5.3 辅助模型多新息广义增广梯度迭代算法 149
3.5.4 辅助模型多新息广义增广最小二乘迭代算法 152
3.5.5 仿真例子 154
3.6 小结与思考题 161
第4章 自回归输出误差类系统 166
4.1 引言 166
4.2 自回归输出误差系统 167
4.2.1 AR-OE系统的辨识模型 167
4.2.2 AR-OE系统的辅助模型 168
4.2.3 辅助模型梯度迭代辨识算法 169
4.2.4 辅助模型最小二乘迭代算法 172
4.2.5 多新息迭代辨识的辅助模型 173
4.2.6 辅助模型多新息梯度迭代算法 173
4.2.7 辅助模型多新息最小二乘迭代算法 175
4.3 自回归输出误差滑动平均系统 176
4.3.1 AR-OEMA系统的辨识模型 177
4.3.2 AR-OEMA系统的辅助模型 178
4.3.3 辅助模型增广梯度迭代辨识算法 178
4.3.4 辅助模型增广最小二乘迭代算法 180
4.3.5 多新息迭代辨识方法的辅助模型 181
4.3.6 辅助模型多新息增广梯度迭代算法 182
4.3.7 辅助模型多新息增广最小二乘迭代算法 183
4.4 自回归输出误差自回归系统 184
4.4.1 AR-GEAR系统的辨识模型 185
4.4.2 AR-GEAR系统的辅助模型 186
4.4.3 辅助模型广义梯度迭代辨识算法 187
4.4.4 辅助模型广义最小二乘迭代算法 188
4.4.5 多新息迭代辨识方法的辅助模型 189
4.4.6 辅助模型多新息广义梯度迭代算法 190
4.4.7 辅助模型多新息广义最小二乘迭代算法 192
4.5 自回归输出误差自回归滑动平均系统 193
4.5.1 AR-BJ系统描述与辨识模型 193
4.5.2 迭代辨识方法辅助模型的建立 195
4.5.3 辅助模型广义增广梯度迭代算法 197
4.5.4 辅助模型广义增广最小二乘迭代算法 199
4.5.5 多新息迭代辨识方法辅助模型的建立 200
4.5.6 辅助模型多新息广义增广梯度迭代算法 201
4.5.7 辅助模型多新息广义增广最小二乘迭代算法 203
4.6 小结与思考题 204
第5章 线性参数自回归输出误差类系统 209
5.1 引言 209
5.2 线性参数自回归输出误差系统 212
5.2.1 LP-AR-OE系统辨识模型 213
5.2.2 LP-AR-OE系统的辅助模型 214
5.2.3 辅助模型梯度迭代辨识算法 215
5.2.4 辅助模型最小二乘迭代辨识算法 217
5.2.5 多新息迭代辨识方法的辅助模型 220
5.2.6 辅助模型多新息梯度迭代辨识算法 221
5.2.7 辅助模型多新息最小二乘迭代算法 224
5.3 线性参数自回归输出误差滑动平均系统 226
5.3.1 LP-AR-OEMA系统辨识模型 226
5.3.2 辅助模型增广梯度迭代辨识算法 227
5.3.3 辅助模型增广最小二乘迭代算法 229
5.3.4 辅助模型多新息增广梯度迭代算法 231
5.3.5 辅助模型多新息增广最小二乘迭代算法 233
5.4 线性参数自回归输出误差自回归系统 235
5.4.1 LP-AR-GEAR系统辨识模型 235
5.4.2 辅助模型广义梯度迭代辨识算法 237
5.4.3 辅助模型广义最小二乘迭代算法 239
5.4.4 辅助模型多新息广义梯度迭代算法 241
5.4.5 辅助模型多新息广义最小二乘迭代算法 243
5.5 线性参数自回归输出误差自回归滑动平均系统 244
5.5.1 LP-AR-OEARMA系统辨识模型 245
5.5.2 LP-AR-OEARMA系统的辅助模型 247
5.5.3 辅助模型广义增广梯度迭代辨识算法 248
5.5.4 辅助模型广义增广最小二乘迭代算法 250
5.5.5 多新息广义增广迭代辨识的辅助模型 254
5.5.6 辅助模型多新息广义增广梯度迭代算法 255
5.5.7 辅助模型多新息广义增广最小二乘迭代算法 258
5.6 小结与思考题 260
第6章 输入非线性输出误差系统 266
6.1 引言 266
6.2 基于过参数化的辅助模型迭代辨识方法 269
6.2.1 IN-OE系统描述与过参数化辨识模型 269
6.2.2 基于过参数化的辅助模型梯度迭代算法 271
6.2.3 基于过参数化的辅助模型最小二乘迭代算法 273
6.2.4 基于过参数化的辅助模型多新息梯度迭代算法 275
6.2.5 基于过参数化的辅助模型多新息最小二乘迭代算法 278
6.3 基于过参数化的辅助模型递阶迭代辨识方法 279
6.3.1 IN-OE系统的过参数化递阶辨识模型 280
6.3.2 基于过参数化的辅助模型递阶梯度迭代算法 280
6.3.3 基于过参数化的辅助模型递阶最小二乘迭代算法 283
6.3.4 基于过参数化的辅助模型递阶多新息梯度迭代算法 285
6.3.5 基于过参数化的辅助模型递阶多新息最小二乘迭代算法 288
6.4 基于关键项分离的辅助模型迭代辨识方法 290
6.4.1 IN-OE系统的关键项分离辨识模型 291
6.4.2 基于关键项分离的辅助模型梯度迭代算法 292
6.4.3 基于关键项分离的辅助模型最小二乘迭代算法 294
6.4.4 基于关键项分离的辅助模型多新息梯度迭代算法 295
6.4.5 基于关键项分离的辅助模型多新息最小二乘迭代算法 298
6.5 基于关键项分离的辅助模型两阶段迭代辨识方法 299
6.5.1 IN-OE系统的关键项分离两阶段辨识模型 299
6.5.2 基于关键项分离的辅助模型两阶段梯度迭代算法 301
6.5.3 基于关键项分离的辅助模型两阶段最小二乘迭代算法 304
6.5.4 基于关键项分离的辅助模型两阶段多新息梯度迭代算法 305
6.5.5 基于关键项分离的辅助模型两阶段多新息最小二乘迭代算法 309
6.6 基于关键项分离的辅助模型三阶段迭代辨识方法 310
6.6.1 IN-OE系统的关键项分离三阶段辨识模型 310
6.6.2 基于关键项分离的辅助模型三阶段梯度迭代算法 311
6.6.3 基于关键项分离的辅助模型三阶段最小二乘迭代算法 313
6.6.4 基于关键项分离的辅助模型三阶段多新息梯度迭代算法 315
6.6.5 基于关键项分离的辅助模型三阶段多新息最小二乘迭代算法 318
6.7 基于双线性参数模型分解的辅助模型迭代辨识方法 320
6.7.1 IN-OE系统的双线性参数模型分解辨识模型 321
6.7.2 基于双线性参数模型分解的辅助模型梯度迭代算法 322
6.7.3 基于双线性参数模型分解的辅助模型最小二乘迭代算法 325
6.7.4 基于双线性参数模型分解的辅助模型多新息梯度迭代算法 327
6.7.5 基于双线性参数模型分解的辅助模型多新息最小二乘迭代算法 331
6.8 小结与思考题 332
第7章 输入非线性输出误差类系统 336
7.1 引言 336
7.2 输入非线性输出误差滑动平均系统 337
7.2.1 IN-OEMA系统描述与过参数化辨识模型 337
7.2.2 基于过参数化的辅助模型增广梯度迭代算法 339
7.2.3 基于过参数化的辅助模型增广最小二乘迭代算法 341
7.2.4 基于过参数化的辅助模型多新息增广梯度迭代算法 343
7.2.5 基于过参数化的辅助模型多新息增广最小二乘迭代算法 345
7.3 输入非线性输出误差自回归系统 346
7.3.1 IN-OEAR系统描述与过参数化辨识模型 347
7.3.2 基于过参数化的辅助模型广义梯度迭代算法 348
7.3.3 基于过参数化的辅助模型广义最小二乘迭代算法 349
7.3.4 基于过参数化的辅助模型多新息广义梯度迭代算法 350
7.3.5 基于过参数化的辅助模型多新息广义最小二乘迭代算法 351
7.4 输入非线性输出误差自回归滑动平均系统 353
7.4.1 IN-OEARMA系统描述与过参数化辨识模型 353
7.4.2 基于过参数化的辅助模型广义增广梯度迭代算法 355
7.4.3 基于过参数化的辅助模型广义增广最小二乘迭代算法 357
7.4.4 基于过参数化的辅助模型多新息广义增广梯度迭代算法 358
7.4.5 基于过参数化的辅助模型多新息广义增广最小二乘迭代算法 361
7.5 基于关键项分离的辅助模型增广迭代辨识方法 363
7.5.1 IN-OEMA系统的关键项分离辨识模型 363
7.5.2 基于关键项分离的辅助模型增广梯度迭代算法 364
7.5.3 基于关键项分离的辅助模型增广最小二乘迭代算法 367
7.5.4 基于关键项分离的辅助模型多新息增广梯度迭代算法 368
7.5.5 基于关键项分离的辅助模型多新息增广最小二乘迭代算法 371
7.6 基于关键项分离的辅助模型广义迭代辨识方法 372
7.6.1 IN-GEAR系统的关键项分离辨识模型 373
7.6.2 基于关键项分离的辅助模型广义梯度迭代算法 374
7.6.3 基于关键项分离的辅助模型广义最小二乘迭代算法 375
7.6.4 基于关键项分离的辅助模型多新息广义梯度迭代算法 376
7.6.5 基于关键项分离的辅助模型多新息广义最小二乘迭代算法 377
7.7 基于关键项分离的辅助模型广义增广迭代辨识方法 378
7.7.1 IN-OEARMA系统的关键项分离辨识模型 378
7.7.2 基于关键项分离的辅助模型广义增广梯度迭代算法 380
7.7.3 基于关键项分离的辅助模型广义增广最小二乘迭代算法 383
7.7.4 基于关键项分离的辅助模型多新息广义增广梯度迭代算法 384
7.7.5 基于关键项分离的辅助模型多新息广义增广最小二乘迭代算法 387
7.8 小结与思考题 389
参考文献 394
索引 407
后记 415
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《基于地质雷达信号波的土壤重金属污染探测方法研究》赵贵章 2019
- 《第一性原理方法及应用》李青坤著 2019
- 《计算机组成原理解题参考 第7版》张基温 2017
- 《数学物理方法与仿真 第3版》杨华军 2020
- 《Helmholtz方程的步进计算方法研究》李鹏著 2019
- 《高等院校保险学专业系列教材 保险学原理与实务》林佳依责任编辑;(中国)牟晓伟,李彤宇 2019
- 《刑法归责原理的规范化展开》陈璇著 2019
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《土壤环境监测前沿分析测试方法研究》中国环境监测总站编著 2018
- 《考古郑州》任伟,刘彦锋著 2019
- 《莫砺锋文集 卷2》莫砺锋著 2019
- 《莫砺锋文集 卷10》莫砺锋著 2019
- 《乐史披沙 音乐学术论文选 2005-2014》李宏锋著 2017
- 《莫砺锋文集 卷6》莫砺锋著 2019
- 《莫砺锋文集 卷9》莫砺锋著 2019
- 《为客天涯 野河山》郑骁锋著 2019
- 《莫砺锋文集 卷1》莫砺锋著 2019
- 《莫砺锋文集 卷8》莫砺锋著 2019
- 《制造业集群供应链网络效应研究》胡宇辰,张孝锋著 2017
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《《走近科学》精选丛书 中国UFO悬案调查》郭之文 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《中医骨伤科学》赵文海,张俐,温建民著 2017
- 《美国小学分级阅读 二级D 地球科学&物质科学》本书编委会 2016
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《强磁场下的基础科学问题》中国科学院编 2020
- 《小牛顿科学故事馆 进化论的故事》小牛顿科学教育公司编辑团队 2018
- 《小牛顿科学故事馆 医学的故事》小牛顿科学教育公司编辑团队 2018
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019