当前位置:首页 > 工业技术
计算机系统  英文版
计算机系统  英文版

计算机系统 英文版PDF电子书下载

工业技术

  • 电子书积分:25 积分如何计算积分?
  • 作 者:(美)布赖恩特(Bryant,R.E.)等著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2004
  • ISBN:7505396242
  • 页数:978 页
图书介绍:本书主要介绍了计算机系统的基本概念,包括最底层的内存中的数据表示,流水线指令的构成,虚拟存储器,编译系统,动态加载库,以及用户应用等。书中提供了大量实际操作,可以帮助读者更好地理解程序执行的方式,改进程序的执行效率。此书以程序员的视角全面讲解了计算机系统,深入浅出地介绍了处理器、编译器、操作系统和网络环境,是这一领域的权威之作。
《计算机系统 英文版》目录

1 A Tour of Computer Systems 1

1.1 Information is Bits+Context 2

1.2 Programs Are Translated by Other Programs into Different Forms 4

1.3 It Pays to Understand How Compilation Systems Work 6

1.4 Processors Read and Interpret Instructions Stored in Memory 6

1.4.1 Hardware Organization of a System 7

1.4.2 Running the he ll o Program 9

1.5 Caches Matter 11

1.6 Storage Devices Form a Hierarchy 12

1.7 The Operating System Manages the Hardware 13

1.7.1 Processes 15

1.7.2 Threads 16

1.7.3 Virtual Memory 16

1.7.4 Files 18

1.8 Systems Communicate With Other Systems Using Networks 18

1.9 The Next Step 20

1.10 Summary 20

Bibliographics Notes 21

Part Ⅰ Program Structure and Execution 24

2 Representing and Manipulating Information 24

2.1 Information Storage 28

2.1.1 Hexadecimal Notation 28

2.1.2 Words 32

2.1.3 Data Sizes 32

2.1.4 Addressing and Byte Ordering 34

2.1.5 Representing Strings 40

2.1.6 Representing Code 41

2.1.7 Boolean Algebras and Rings 42

2.1.8 Bit-Level Operations in C 46

2.1.9 Logical Operations in C 49

2.1.10 Shift Operations in C 50

2.2 Integer Representations 51

2.2.1 Integral Data Types 51

2.2.2 Unsigned and Twvo's-Complement Encodings 51

2.2.3 Conversions Between Signed and Unsigned 56

2.2.4 Signed vs. Unsigned in C 59

2.2.5 Expanding the Bit Representation of a Number 61

2.2.6 Truncating Numbers 63

2.2.7 Advice on Signed vs.Unsigned 65

2.3 Integer Arithmetic 65

2.3.1 Unsigned Addition 66

2.3.2 Twvo's-Complement Addition 69

2.3.3 Twvo's-Complement Negation 72

2.3.4 Unsigned Multiplication 74

2.3.5 Two's-Complement Multiplication 75

2.3.6 Multiplying by Powers of Two 76

2.3.7 Dividing by Powers of Two 77

2.4 Floating Point 80

2.4.1 Fractional Binary Numbers 81

2.4.2 IEEE Floating-Point Representation 83

2.4.3 Example Numbers 85

2.4.4 Rounding 89

2.4.5 Floating-Point Operations 91

2.4.6 Floating Point in C 92

2.5 Summary 98

Bibliographic Notes 99

Homework Problems 99

Solution to Practice Problems 108

3 Machine-Level Representation of Programs 122

3.1 A Historical Perspective 125

3.2 Program Encodings 128

3.2.1 Machine-Level Code 129

3.2.2 Code Examples 130

3.2.3 A Note on Formatting 133

3.3 Data Formats 135

3.4 Accessing Information 136

3.4.1 Operand Specifiers 137

3.4.2 Data Movement Instructions 138

3.4.3 Data Movement Example 141

3.5 Arithmetic and Logical Operations 143

3.5.1 Load Effective Address 143

3.5.2 Unary and Binary Operations 144

3.5.3 Shift Operations 145

3.5.4 Discussion 146

3.5.5 Special Arithmetic Operations 147

3.6 Control 148

3.6.1 Condition Codes 149

3.6.2 Accessing the Condition Codes 150

3.6.3 Jump Instructions and their Encodings 152

3.6.4 Translating Conditional Branches 156

3.6.5 Loops 158

3.6.6 Switch Statements 166

3.7 Procedures 170

3.7.1 Stack Frame Structure 170

3.7.2 Transferring Control 172

3.7.3 Register Usage Conventions 173

3.7.4 Procedure Example 174

3.7.5 Recursive Procedures 178

3.8 Array Allocation and Access 180

3.8.1 Basic Principles 180

3.8.2 Pointer Arithmetic 182

3.8.3 Arrays and Loops 183

3.8.4 Nested Arrays 183

3.8.5 Fixed Size Arrays 186

3.8.6 Dynamically Allocated Arrays 188

3.9 Heterogeneous Data Structures 191

3.9.1 Structures 191

3.9.2 Unions 194

3.10 Alignment 198

3.11 Putting it Together: Understanding Pointers 201

3.12 Life in the Real World: Using the GDB Debugger 204

3.13 Out-of-Bounds Memory References and Buffer Overflow 206

3.14 Floating-Point Code 211

3.14.1 Floating-Point Registers 211

3.14.2 Stack Evaluation of Expressions 212

3.14.3 Floating-Point Data Movement and Conversion Operations 215

3.14.4 Floating-Point Arithmetic Instructions 217

3.14.5 Using Floating Point in Procedures 220

3.14.6 Testing and Comparing Floating-Point Values 221

3.15 Embedding Assembly Code in C Programs 223

3.15.1 Basic Inline Assembly 224

3.15.2 Extended Form of asm 226

3.16 Summary 230

Bibliographic Notes 231

Homework Problems 231

Solutions to Practice Problems 238

4 Processor Architecture 254

4.1 The Y86 Instruction Set Architecture 258

4.2 Logic Design and the Hardware Control Language HCL 271

4.2.1 Logic Gates 271

4.2.2 Combinational Circuits and HCL Boolean Expressions 272

4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions 274

4.2.4 Set Membership 278

4.2.5 Memory and Clocking 279

4.3 Sequential Y86 Implementations 280

4.3.1 Organizing Processing into Stages 281

4.3.2 SEQ Hardware Structure 291

4.3.3 SEQ Timing 295

4.3.4 SEQ Stage Implementations 298

4.3.5 SEQ+: Rearranging the Computation Stages 305

4.4 General Principles of Pipelining 309

4.4.1 Computational Pipelines 309

4.4.2 A Detailed Look at Pipeline Operation 311

4.4.3 Limitations of Pipelining 313

4.4.4 Pipelining a System with Feedback 315

4.5 Pipelined Y86 Implementations 317

4.5.1 Inserting Pipeline Registers 317

4.5.2 Rearranging and Relabeling Signals 321

4.5.3 Next PC Prediction 322

4.5.4 Pipeline Hazards 323

4.5.5 Avoiding Data Hazards by Stalling 328

4.5.6 Avoiding Data Hazards by Forwarding 330

4.5.7 Load/Use Data Hazards 335

4.5.8 PIPE Stage Implementations 337

4.5.9 Pipeline Control Logic 343

4.5.10 Performance Analysis 352

4.5.11 Unfinished Business 354

4.6 Summary 359

4.6.1 Y86 Simulators 360

Bibliographic Notes 360

Homework Problems 360

Solutions to Practice Problems 365

5 Optimizing Program Performance 376

5.1 Capabilities and Limitations of Optimizing Compilers 379

5.2 Expressing Program Performance 382

5.3 Program Example 384

5.4 Eliminating Loop Inefficiencies 387

5.5 Reducing Procedure Calls 391

5.6 Eliminating Unneeded Memory References 393

5.7 Understanding Modern Processors 395

5.7.1 Overall Operation 395

5.7.2 Functional Unit Performance 399

5.7.3 A Closer Look at Processor Operation 400

5.8 Reducing Loop Overhead 408

5.9 Converting to Pointer Code 412

5.10 Enhancing Parallelism 415

5.10.1 Loop Splitting 415

5.10.2 Register Spilling 420

5.10.3 Limits to Parallelism 421

5.11 Putting it Together: Summary of Results for Optimizing Combining Code 423

5.11.1 Floating-Point Performance Anomaly 423

5.11.2 Changing Platforms 425

5.12 Branch Prediction and Misprediction Penalties 425

5.13 Understanding Memory Performance 429

5.13.1 Load Latency 429

5.13.2 Store Latency 431

5.14 Life in the Real World: Performance Improvement Techniques 436

5.15 Identifying and Eliminating Performance Bottlenecks 437

5.15.1 Program Profiling 437

5.15.2 Using a Profiler to Guide Optimization 439

5.15.3 Amdahl's Law 443

5.16 Summary 444

Bibliographic Notes 445

Homework Problems 445

Solutions to Practice Problems 450

6 The Memory Hierarchy 454

6.1 Storage Technologies 457

6.1.1 Random-Access Memory 457

6.1.2 Disk Storage 464

6.1.3 Storage Technology Trends 476

6.2 Locality 478

6.2.1 Locality of References to Program Data 478

6.2.2 Locality of Instruction Fetches 480

6.2.3 Summary of Locality 481

6.3 The Memory Hierarchy 482

6.3.1 Caching in the Memory Hierarchy 484

6.3.2 Summary of Memory Hierarchy Concepts 486

6.4 Cache Memories 487

6.4.1 Generic Cache Memory Organization 488

6.4.2 Direct-Mapped Caches 490

6.4.3 Set Associative Caches 497

6.4.4 Fully Associative Caches 499

6.4.5 Issues with Writes 503

6.4.6 Instruction Caches and Unified Caches 504

6.4.7 Performance Impact of Cache Parameters 505

6.5 Writing Cache-Friendly Code 507

6.6 Putting it Together: The Impact of Caches on Program Performance 511

6.6.1 The Memory Mountain 512

6.6.2 Rearranging Loops to Increase Spatial Locality 517

6.6.3 Using Blocking to Increase Temporal Locality 520

6.7 Putting It Together: Exploiting Locality in Your Programs 523

6.8 Summary 524

Bibliographic Notes 524

Homework Problems 525

Solutions to Practice Problems 531

Part Ⅱ Running Programs on a System 538

7 Linking 538

7.1 Compiler Drivers 541

7.2 Static Linking 542

7.3 Object Files 543

7.4 Relocatable Object Files 544

7.5 Symbols and Symbol Tables 545

7.6 Symbol Resolution 548

7.6.1 How Linkers Resolve Multiply Defined Global Symbols 549

7.6.2 Linking with Static Libraries 553

7.6.3 How Linkers Use Static Libraries to Resolve References 556

7.7 Relocation 557

7.7.1 Relocation Entries 558

7.7.2 Relocating Symbol References 558

7.8 Executable Object Files 561

7.9 Loading Executable Object Files 564

7.10 Dynamic Linking with Shared Libraries 566

7.11 Loading and Linking Shared Libraries from Applications 568

7.12 Position-Independent Code (PIC) 570

7.12.1 PIC Data References 572

7.12.2 PIC Function Calls 572

7.13 Tools for Manipulating Object Files 574

7.14 Summary 575

Bibliographic Notes 575

Homework Problems 576

Solutions to Practice Problems 582

8 Exceptional Control Flow 584

8.1 Exceptions 587

8.1.1 Exception Handling 588

8.1.2 Classes of Exceptions 590

8.1.3 Exceptions in Intel Processors 592

8.2 Processes 594

8.2.1 Logical Control Flow 594

8.2.2 Private Address Space 595

8.2.3 User and Kernel Modes 596

8.2.4 Context Switches 597

8.3 System Calls and Error Handling 599

8.4 Process Control 600

8.4.1 Obtaining Process ID's 600

8.4.2 Creating and Terminating Processes 600

8.4.3 Reaping Child Processes 605

8.4.4 Putting Processes to Sleep 610

8.4.5 Loading and Running Programs 611

8.4.6 Using fork and execve to Run Programs 614

8.5 Signals 617

8.5.1 Signal Terminology 617

8.5.2 Sending Signals 619

8.5.3 Receiving Signals 623

8.5.4 Signal Handling Issues 625

8.5.5 Portable Signal Handling 631

8.5.6 Explicitly Blocking Signals 633

8.6 Nonlocal Jumps 635

8.7 Tools for Manipulating Processes 638

8.8 Summary 638

Bibliographic Notes 639

Homework Problems 639

Solutions to Practice Problems 645

9 Measuring Program Execution Time 650

9.1 The Flow of Time on a Computer System 653

9.1.1 Process Scheduling and Timer Interrupts 654

9.1.2 Time from an Application Program's Perspective 655

9.2 Measuring Time by Interval Counting 658

9.2.1 Operation 658

9.2.2 Reading the Process Timers 659

9.2.3 Accuracy of Process Timers 660

9.3 Cycle Counters 663

9.3.1 IA32 Cycle Counters 663

9.4 Measuring Program Execution Time with Cycle Counters 665

9.4.1 The Effects of Context Switching 665

9.4.2 Caching and Other Effects 667

9.4.3 The K -Best Measurement Scheme 671

9.5 Time-of-Day Measurements 680

9.6 Putting it Together: An Experimental Protocol 683

9.7 Looking into the Future 684

9.8 Life in the Real World: An Implementation of the K -Best Measurement Scheme 684

9.9 Lessons Learned 685

9.10 Summary 686

Bibliographic Notes 686

Homework Problems 687

Solutions to Practice Problems 688

10 Virtual Memory 690

10.1 Physical and Virtual Addressing 693

10.2 Address Spaces 694

10.3 VM as a Tool for Caching 695

10.3.1 DRAM Cache Organization 696

10.3.2 Page Tables 696

10.3.3 Page Hits 698

10.3.4 Page Faults 698

10.3.5 Allocating Pages 700

10.3.6 Locality to the Rescue Again 700

10.4 VM as a Tool for Memory Management 701

10.4.1 Simplifying Linking 701

10.4.2 Simplifying Sharing 702

10.4.3 Simplifying Memory Allocation 702

10.4.4 Simplifying Loading 703

10.5 VM as a Tool for Memory Protection 703

10.6 Address Translation 704

10.6.1 Integrating Caches and VM 707

10.6.2 Speeding up Address Translation with a TLB 707

10.6.3 Multi-Level Page Tables 709

10.6.4 Putting it Together: End-to-End Address Translation 711

10.7 Case Study: The Pentium/Linux Memory System 715

10.7.1 Pentium Address Translation 716

10.7.2 Linux Virtual Memory System 721

10.8 Memory Mapping 724

10.8.1 Shared Objects Revisited 725

10.8.2 The fork Function Revisited 727

10.8.3 The execve Function Revisited 727

10.8.4 User-Level Memory Mapping with the mmap Function 728

10.9 Dynamic Memory Allocation 730

10.9.1 The malloc and free Functions 731

10.9.2 Why Dynamic Memory Allocation? 733

10.9.3 Allocator Requirements and Goals 735

10.9.4 Fragmentation 736

10.9.5 Implementation Issues 737

10.9.6 Implicit Free Lists 737

10.9.7 Placing Allocated Blocks 739

10.9.8 Splitting Free Blocks 740

10.9.9 Getting Additional Heap Memory 740

10.9.10 Coalescing Free Blocks 741

10.9.11 Coalescing with Boundary Tags 741

10.9.12 Putting it Together: Implementing a Simple Allocator 744

10.9.13 Explicit Free Lists 751

10.9.14 Segregated Free Lists 752

10.10 Garbage Collection 755

10.10.1 Garbage Collector Basics 756

10.10.2 Mark&Sweep Garbage Collectors 757

10.10.3 Conservative Mark&Sweep for C Programs 758

10.11 Common Memory-Related Bugs in C Programs 759

10.11.1 Dereferencing Bad Pointers 759

10.11.2 Reading Uninitialized Memory 760

10.11.3 Allowing Stack Buffer Overflows 760

10.11.4 Assuming that Pointers and the Objects they Point to Are the Same Size 761

10.11.5 Making Off-by-One Errors 761

10.11.6 Referencing a Pointer Instead of the Object it Points to 762

10.11.7 Misunderstanding Pointer Arithmetic 762

10.11.8 Referencing Nonexistent Variables 763

10.11.9 Referencing Data in Free Heap Blocks 763

10.11.10 Introducing Memory Leaks 764

10.12 Recapping Some Key Ideas About Virtual Memory 764

10.13 Summary 764

Bibliographic Notes 765

Homework Problems 766

Solutions to Practice Problems 770

Part Ⅲ Interaction and Communication Between Programs 776

11 System-Level I/O 776

11.1 Unix I/O 778

11.2 Opening and Closing Files 779

11.3 Reading and Writing Files 781

11.4 Robust Reading and Writing with the RIo Package 783

11.4.1 RIo Unbuffered Input and Output Functions 783

11.4.2 RIo Buffered Input Functions 784

11.5 Reading File Metadata 789

11.6 Sharing Files 791

11.7 I/O Redirection 793

11.8 Standard I/O 795

11.9 Putting It Together: Which I/O Functions Should I Use? 796

11.10 Summary 797

Bibliographic Notes 798

Homework Problems 798

12 Network Programming 800

12.1 The Client-Server Programming Model 802

12.2 Networks 803

12.3 The Global IP Internet 807

12.3.1 IP Addresses 809

12.3.2 Internet Domain Names 811

12.3.3 Internet Connections 815

12.4 The Sockets Interface 816

12.4.1 Socket Address Structures 817

12.4.2 The socket Function 818

12.4.3 The connect Function 818

12.4.4 Theopen_clientfdFunction 819

12.4.5 The bind Function 819

12.4.6 The l i s ten Function 820

12.4.7 Theopen_listenfdFunction 821

12.4.8 The accept Function 821

12.4.9 Example Echo Client and Server 823

12.5 Web Servers 826

12.5.1 Web Basics 826

12.5.2 Web Content 827

12.5.3 HTTP Transactions 828

12.5.4 Serving Dynamic Content 831

12.6 Putting it Together: The TINY Web Server 834

12.7 Summary 841

Bibliographic Notes 842

Homework Problems 842

Solutions to Practice Problems 843

13 Concurrent Programming 846

13.1 Concurrent Programming With Processes 849

13.11 A Concurrent Server Based on Processes 851

13.1.2 Pros and Cons of Processes 851

13.2 Concurrent Programming With 1/O Multiplexing 853

13.2.1 A Concurrent Event-Driven Server Based on I/O Multiplexing 856

13.2.2 Pros and Cons of I/O Multiplexing 860

13.3 Concurrent Programming With Threads 861

13.3.1 Thread Execution Model 862

13.3.2 Posix Threads 863

13.3.3 Creating Threads 864

13.3.4 Terminating Threads 864

13.3.5 Reaping Terminated Threads 865

13.3.6 Detaching Threads 865

13.3.7 Initializing Threads 866

13.3.8 A Concurrent Server Based on Threads 866

13.4 Shared Variables in Threaded Programs 868

13.4.1 Threads Memory Model 869

13.4.2 Mapping Variables to Memory 870

13.4.3 Shared Variables 870

13.5 Synchronizing Threads with Semaphores 871

13.5.1 Progress Graphs 874

13.5.2 Using Semaphores to Access Shared Variables 877

13.5.3 Posix Semaphores 878

13.5.4 Using Semaphores to Schedule Shared Resources 879

13.6 Putting It Together: A Concurrent Server Based on Prethreading 882

13.7 Other Concurrency Issues 885

13.7.1 Thread Safety 885

13.7.2 Reentrancy 888

13.7.3 Using Existing Library Functions in Threaded Programs 889

13.7.4 Races 890

13.7.5 Deadlocks 891

13.8 Summary 894

Bibliographic Notes 895

Homework Problems 895

Solutions to Practice Problems 899

A HCL Descriptions of Processor Control Logic 905

B Error Handling 925

Bibliography 949

Index 953

返回顶部