当前位置:首页 > 外文
combustion  physical  and  chemical  fundamentals  modeling  and  simmulation  experiments  pollutan
combustion  physical  and  chemical  fundamentals  modeling  and  simmulation  experiments  pollutan

combustion physical and chemical fundamentals modeling and simmulation experiments pollutanPDF电子书下载

外文

  • 电子书积分:13 积分如何计算积分?
  • 作 者:j. warnatz u. maas r.w dibble
  • 出 版 社:prof. dr. dr. h. c.
  • 出版年份:2222
  • ISBN:354025992
  • 页数:379 页
图书介绍:
《combustion physical and chemical fundamentals modeling and simmulation experiments pollutan》目录
标签:

1 Introduction,Fundamental Definitions and Phenomena 1

1.1 Introduction 1

1.2 Some Fundamental Definitions 1

1.3 Basic Flame Types 4

1.4 Exercises 8

2 Experimental Investigation of Flames 9

2.1 Velocity Measurements 10

2.2 Density Measurement 11

2.3 Concentration Measurements 13

2.4 Temperature Measurements 18

2.5 Pressure Measurements 20

2.6 Measurement of Particle Sizes 21

2.7 Simultaneous Diagnostics 22

2.8 Exercises 27

3 Mathematical Description of Premixed Laminar Flat Flames 29

3.1 Conservation Equations for Laminar Flat Premixed Flames 29

3.2 Heat and Mass Transport 33

3.3 The Description of a Laminar Premixed Flat Flame Front 33

3.4 Exercises 38

4 Thermodynamics of Combustion Processes 39

4.1 The First Law of Thermodynamics 39

4.2 Standard Enthalpies of Formation 41

4.3 Heat Capacities 43

4.4 The Second Law of Thermodynamics 44

4.5 The Third Law of Thermodynamics 45

4.6 Equilibrium Criteria and Thermodynamic Variables 46

4.7 Equilibrium in Gas Mixtures; Chemical Potential 47

4.8 Determination of Equilibrium Compositions in Gases 49

4.9 Determination of Adiabatic Flame Temperatures 51

4.10 Tabulation of Thermodynamic Data 52

4.11 Exercises 55

5 Transport Phenomena 57

5.1 A Simple Physical Model of Transport Processes 57

5.2 Heat Conduction in Gases 60

5.3 Viscosity of Gases 62

5.4 Diffusion in Gases 64

5.5 Thermal Diffusion,Dufour Effect,and Pressure Diffusion 66

5.6 Comparison with Experiments 67

5.7 Exercises 71

6 Chemical Kinetics 73

6.1 Rate Laws and Reaction Orders 73

6.2 Relation of Forward and Reverse Reactions 75

6.3 Elementary Reactions,Reaction Molecularity 75

6.4 Experimental Investigation of Elementary Reactions 77

6.5 Temperature Dependence of Rate Coefficients 79

6.6 Pressure Dependence of Rate Coefficients 81

6.7 Surface Reactions 84

6.8 Exercises 88

7.Reaction Mechanisms 91

7.1 Characteristics of Reaction Mechanisms 91

7.1.1 Quasi-Steady States 92

7.1.2 Partial Equilibrium 94

7.2 Analysis of Reaction Mechanisms 97

7.2.1 Sensitivity Analysis 97

7.2.2 Reaction Flow Analysis 101

7.2.3 Eigenvalue Analyses of Chemical Reaction Systems 103

7.3 Stiffness of Ordinary Differential Equation Systems 107

7.4 Simplification of Reaction Mechanisms 107

7.5 Radical Chain Reactions 115

7.6 Exercises 117

8 Laminar Premixed Flames 119

8.1 Zeldovich’s Analysis of Flame Propagation 119

8.2 Flame Structures 121

8.3 Flame Velocities 124

8.4 Sensitivity Analysis 127

8.5 Exercises 128

9 Laminar Nonpremixed Flames 129

9.1 Counterflow Nonpremixed Flames 129

9.2 Laminar Jet Nonpremixed Flames 133

9.3 Nonpremixed Flames With Fast Chemistry 135

9.4 Exercises 138

10 Ignition Processes 141

10.1 Semenov’s Analysis of Thermal Explosions 142

10.2 Frank-Kamenetskii’s Analysis of Thermal Explosions 143

10.3 Autoignition:Ignition Limits 145

10.4 Autoignition:Ignition-Delay Time 148

10.5 Induced Ignition,Minimum Ignition Energies 149

10.6 Spark Ignition 153

10.7 Detonations 157

10.8 Exercises 163

11 Low-Temperature Oxidation,Engine Knock 165

11.1 Fundamental Phenomena in Otto Engines 165

11.2 Oxidation at Intermediate Temperatures 168

11.3 Low-Temperature Oxidation 169

11.4 Ignition Processes in Reciprocating Engines 173

11.4.1 Knock Damages in Otto Engines 173

11.4.2 Ignition in Diesel Engines 174

11.4.3 The HCCI Concept 175

11.4.4 The DICI Concept 177

11.5 Exercises 178

12 The Navier-Stokes-Equations for Three-Dimensional Reacting Flow 179

12.1 The Conservation Equations 179

12.1.1 Overall Mass Conservation 180

12.1.2 Species Mass Conservation 181

12.1.3 Momentum Conservation 181

12.1.4 Energy Conservation 182

12.2 The Empirical Laws 183

12.2.1 Newton’s Law 183

12.2.2 Fourier’s Law 184

12.2.3 Fick’s Law andThermal Diffusion 184

12.2.4 Calculation of the Transport Coefficients from Molecular Parameters 185

12.3 Exercises 185

13 Turbulent Reacting Flows 187

13.1 Some Fundamental Phenomena 187

13.2 Direct Numerical Simulation 189

13.3 Concepts for Turbulence Modeling:Time- and Favre-Averaging 192

13.4 Reynolds-Averaged Navier-Stokes (RAMS) Equations 194

13.5 Turbulence Models 196

13.6 Mean Reaction Rates 200

13.7 Concepts for Turbulence Modeling:Probability Density Functions 202

13.8 Eddy-Break-Up Models 206

13.9 Turbulent Scales 207

13.10 Large-Eddy Simulation (LES) 209

13.11 Exercises 211

14 Turbulent Nonpremixed Flames 213

14.1 Nonpremixed Flames with Equilibrium Chemistry 214

14.2 Finite-Rate Chemistry in Nonpremixed Flames 217

14.3 Flame Extinction 221

14.4 PDF-Simulations of Turbulent Non-Premixed Flames Using a Monte-Carlo Method 224

14.5 Exercises 226

15 Turbulent Premixed Flames 227

15.1 Classification of Turbulent Premixed Flames 227

15.2 Flamelet Models 230

15.2.1 Flamelet Modelling Using a Reaction Progress Variable 231

15.2.2 Flamelet Modelling Using a Level-Set Method 232

15.3 Turbulent Flame Velocity 233

15.4 Flame Extinction 235

15.5 Other Models of Turbulent Premixed Combustion 237

15.6 Exercises 238

16 Combustion of Liquid and Solid Fuels 239

16.1 Droplet Combustion 239

16.1.1 Combustion of Single Droplets 240

16.1.2 Combustion of Droplet Groups 244

16.2 Spray Combustion 246

16.2.1 Formation of Sprays 246

16.2.2 Spray Combustion Modes 247

16.2.3 Statistical Description of Sprays 249

16.2.4 Modeling of Turbulent Spray Combustion 252

16.2.5 Flamelet-Type Models for Spray Combustion 253

16.3 Coal Combustion 255

16.3.1 Pyrolysis of Coal 255

16.3.2 Burning of Volatile Compounds 256

16.3.3 Burning of the Coke 256

16.3.4 Coal Gasification 257

16.4 Exercises 258

17 Formation of Nitric Oxides 259

17.1 Thermal NO (Zeldovich NO) 259

17.2 Prompt NO (Fenimore NO) 262

17.3 NO Generated via Nitrous Oxide 265

17.4 Conversion of Fuel Nitrogen into NO 265

17.5 NO Reduction by Combustion Modifications 267

17.6 Catalytic Combustion 271

17.7 NO Reduction by Post-Combustion Processes 272

17.8 Exercises 275

18 Formation of Hydrocarbons and Soot 277

18.1 Unburnt Hydrocarbons 277

18.1.1 Flame Extinction Due to Strain 278

18.1.2 Flame Extinction at Walls and in Gaps 278

18.2 Formation of Polycyclic Aromatic Hydrocarbons (PAH) 280

18.3 The Phenomenology of Soot Formation 283

18.4 Modelling and Simulation of Soot Formation 287

18.5 Exercises 296

19 Effects of Combustion Processes on the Atmosphere 297

19.1 The Structure of the Atmosphere 297

19.1.1 Pressure in the Atmosphere 297

19.1.2 Temperature and Classification of Compartments in the Atmosphere 299

19.1.3 Composition of the Atmosphere 300

19.2.The Atmosphere as a Photochemical System 300

19.2.1 Lambert-Beer Law 300

19.2.2 Stem-Vollmer Equation 301

19.2.3 Formation of Photochemical Layers 302

19.3 Incoming Sun Radiation,Photochemical Primary Processes 303

19.4.Physical Processes in the Atmosphere 305

19.4.1 Conservation of the Mass of Species 305

19.4.2 Conservation of Energy 306

19.4.3 Solution of the Conservation Equations 307

19.5 Chemistry of the Unpolluted Atmosphere 307

19.5.1 Pure Oxygen Atmosphere 307

19.5.2 Oxygen-Nitrogen-Hydrogen-Carbon Atmosphere 308

19.6 Chemistry of the Polluted Atmosphere 310

19.6.1 Photochemical Smog 310

19.6.2 Supersonic Transports 314

19.6.3 Green-House Effect 315

19.6.4 Acid rain 316

19.7 The Role of Combustion Sources in Atmospheric Pollution 317

20 Appendix 1:Mathematics 319

20.1 Some Definitions and Laws for Vectors and Tensors 319

20.2.1 Formulation of the Problem 320

20.2.2 General Remarks on Solution Algorithms for ODE Systems 321

20.2.3 Euler Method 322

20.2.4 Extrapolation Method 324

20.3 Numerical Solution of Partial Differential Equation Systems 325

20.3.1 Spatial Discretization 326

20.3.2 Initial Values,Boundary Conditions,Stationary Solution 328

20.3.3 Explicit Solution Methods 329

20.3.4 Implicit Solution Methods 330

20.3.5 Semi-implicit Solution of Partial Differential Equations 330

20.3.6 Implicit Solution of Partial Differential Equations 331

21 Appendix 2:Reaction Mechanisms 333

21.1 Mechanism of the Oxidation of H2,CO,C1 and C2 Hydrocarbons 333

21.2 Reaction Mechanism of the Generation and Consumption of NOx 340

22 References 345

23 Index 367

返回顶部