微分流形与黎曼几何 英文版PDF电子书下载
- 电子书积分:14 积分如何计算积分?
- 作 者:(美) WilliamM.Boothby著
- 出 版 社:人民邮电出版社
- 出版年份:2007
- ISBN:9787115165992
- 页数:419 页
Ⅰ.Introduction to Manifolds 1
1.Preliminary Comments on Rn 1
2.Rn and Euclidean Space 4
3.Topological Manifolds 6
4.Further Examples of Manifolds Cutting and Pasting 11
5.Abstract Manifolds Some Examples 14
Ⅱ.Functions of Several Variables and Mappings 20
1.Differentiability for Functions of Several Variables 20
2.Differentiability of Mappings and Jacobians 25
3.The Space of Tangent Vectors at a Point of Rn 29
4.Another Definition of Ta (Rn) 32
5.Vector Fields on Open Subsets of Rn 36
6.The Inverse Function Theorem 41
7.The Rank of a Mapping 46
Ⅲ.Differentiable Manifolds and Submanifolds 52
1.The Definition of a Differentiable Manifold 52
2.Further Examples 59
3.Differentiable Functions and Mappings 65
4.Rank of a Mapping, Immersions 68
5.Submanifolds 74
6.Lie Groups 80
7.The Action of a Lie Group on a Manifold Transformation Groups 87
8.The Action of a Discrete Group on a Manifold 93
9.Covering Manifolds 98
Ⅳ Vector Fields on a Manifold 104
1.The Tangent Space at a Point of a Manifold 104
2.Vector Fields 113
3.One-Parameter and Local One-Parameter Groups Acting on a Manifold 119
4.The Existence Theorem for Ordinary Differential Equations 127
5.Some Examples of One-Parameter Groups Acting on a Manifold 135
6.One-Parameter Subgroups of Lie Groups 142
7.The Lie Algebra of Vector Fields on a Manifold 146
8.Frobenius’s Theorem 153
9.Homogeneous Spaces 160
Ⅴ Tensors and Tensor Fields on Manifolds 171
1.Tangent Covectors 171
Covectors on Manifolds 172
Covector Fields and Mappings 174
2.Bilinear Forms.The Riemannian Metric 177
3.Riemannian Manifolds as Metric Spaces 181
4.Partitions of Unity 186
Some Applications of the Partition of Unity 188
5.Tensor Fields 192
Tensors on a Vector Space 192
Tensor Fields 194
Mappings and Covariant Tensors 195
The Symmetrizing and Alternating Transformations 196
6.Multiplication of Tensors 199
Multiplication of Tensors on a Vector Space 199
Multiplication of Tensor Fields 201
Exterior Multiplication of Alternating Tensors 202
The Exterior Algebra on Manifolds 206
7.Orientation of Manifolds and the Volume Element 207
8.Exterior Differentiation 212
An Application to Frobenius’s Theorem 216
Ⅵ.Integration on Manifolds 223
1.Integration in Rn Domains of Integration 223
Basic Properties of the Riemann Integral 224
2.A Generalization to Manifolds 229
Integration on Riemannian Manifolds 232
3.Integration on Lie Groups 237
4.Manifolds with Boundary 243
5.Stokes’s Theorem for Manifolds 251
6.Homotopy of Mappings.The Fundamental Group 258
Homotopy of Paths and Loops.The Fundamental Group 259
7.Some Applications of Differential Forms.The de Rham Groups 265
The Homotopy Operator 268
8.Some Further Applications of de Rham Groups 272
The de Rham Groups of Lie Groups 276
9.Covering Spaces and Fundamental Group 280
Ⅶ.Differentiation on Riemannian Manifolds 289
1.Differentiation of Vector Fields along Curves in Rn 289
The Geometry of Space Curves 292
Curvature of Plane Curves 296
2.Differentiation of Vector Fields on Submanifolds of Rn 298
Formulas for Covariant Derivatives 303
?xp Y and Differentiation of Vector Fields 305
3.Differentiation on Riemannian Manifolds 308
Constant Vector Fields and Parallel Displacement 314
4.Addenda to the Theory of Differentiation on a Manifold 316
The Curvature Tensor 316
The Riemannian Connection and Exterior Differential Forms 319
5.Geodesic Curves on Riemannian Manifolds 321
6.The Tangent Bundle and Exponential Mapping.Normal Coordinates 326
7.Some Further Properties of Geodesics 332
8.Symmetric Riemannian Manifolds 340
9.Some Examples 346
Ⅷ.Curvature 355
1.The Geometry of Surfaces in E3 355
The Principal Curvatures at a Point of a Surface 359
2.The Gaussian and Mean Curvatures of a Surface 363
The Theorema Egregium of Gauss 366
3.Basic Properties of the Riemann Curvature Tensor 371
4.Curvature Forms and the Equations of Structure 378
5.Differentiation of Covariant Tensor Fields 384
6.Manifolds of Constant Curvature 391
Spaces of Positive Curvature 394
Spaces of Zero Curvature 396
Spaces of Constant Negative Curvature 397
REFERENCES 403
INDEX 411
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《AutoCAD 2018自学视频教程 标准版 中文版》CAD/CAM/CAE技术联盟 2019
- 《跟孩子一起看图学英文》张紫颖著 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019
- 《复分析 英文版》(中国)李娜,马立新 2019
- 《张世祥小提琴启蒙教程 中英文双语版》张世祥编著 2017
- 《生物化学 本科临床 英文版》张晓伟 2018
- 《理想国 全英文原版》(古希腊)柏拉图著 2017
- 《Dreamweaver CC 2018标准实例教程 中文版》杨雪静,胡仁喜编著 2019
- 《Flash CC动画制作实用教程 中文版》麓山文化 2019
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《人民院士》吴娜著 2019
- 《中国人民的心》杨朔著;夕琳编 2019
- 《中华人民共和国成立70周年优秀文学作品精选 短篇小说卷 上 全2册》贺邵俊主编 2019
- 《中华人民共和国成立70周年优秀文学作品精选 中篇小说卷 下 全3册》洪治纲主编 2019
- 《中华人民共和国药典中成药薄层色谱彩色图集》(中国)国家药典委员会 2019
- 《北京人民艺术剧院剧本系列 白露》刘国华,马鹏程 2019
- 《中华人民共和国成立70周年优秀文学作品精选 中篇小说卷 上 全3册》洪治纲主编 2019
- 《中华人民共和国国歌 钢琴谱》聂耳编 2019
- 《中国人民大学研究报告系列 中国水处理行业可持续发展战略研究报告 膜工业卷 3》(中国)郑祥,魏源送,王志伟 2019