当前位置:首页 > 数理化
电磁场与电磁波  第2版
电磁场与电磁波  第2版

电磁场与电磁波 第2版PDF电子书下载

数理化

  • 电子书积分:20 积分如何计算积分?
  • 作 者:程(Cheng,D.K.)著
  • 出 版 社:清华大学出版社
  • 出版年份:2007
  • ISBN:7302152128
  • 页数:701 页
图书介绍:《国际知名大学原版教材•信息技术学科与电气工程学科系列:电磁场与电磁波(第2版)》是关于电磁场与电磁波的一本很有特色的经典教材,取材新颖,笔法灵活,逻辑性强。教材从矢量分析和场论入手,以简捷清晰的方式建立了电磁模型。紧接着,全面地阐述了电磁场和电磁波的基础理论,包括静电场、静肱场、稳恒电流的场、边值问题的经典解法、时变电磁场与麦克斯韦方程组、平面电磁波及其传播、传输线、阻抗圆图、微带线、波导与谐振腔、天线与电磁辐射、电磁屏蔽等内容。《国际知名大学原版教材•信息技术学科与电气工程学科系列:电磁场与电磁波(第2版)》除了内容全面之外,还具有很大的灵活性,全书的内容安排具有较完整的模块性,从而可以灵活地取舍和组合成适合不同行业和不同对象的电碰场与电磁波的教材。
《电磁场与电磁波 第2版》目录

1The Electromagnetic Model 1

1-1 Introduction 1

1-2 The Electromagnetic Model 3

1-3 SI Units and Universal Constants 8

Review Questions 10

2Vector Analysis 11

2-1 Introduction 11

2-2 Vector Addition and Subtraction 12

2-3 Products of Vectors 14

2-3.1 Scalar or Dot Product 14

2-3.2 Vector or Cross Product 16

2-3.3 Product of Three Vectors 18

2-4 Orthogonal Coordinate Systems 20

2-4.1 Cartesian Coordinates 23

2-4.2 Cylindrical Coordinates 27

2-4.3 Spherical Coordinates 31

2-5 Integrals Containing Vector Functions 37

2-6 Gradient of a Scalar Field 42

2-7 Divergence of a Vector Field 46

2-8 Divergence Theorem 50

2-9 Curl of a Vector Field 54

2-10 Stokes’s Theorem 58

2-11 Two Null Identities 61

2-11.1 Identity Ⅰ 61

2-11.2 Identity Ⅱ 62

2-12 Helmholtz’s Theorem 63

Review Questions 66

3Static Electric Fields 72

3-1 Introduction 72

3-2 Fundamental Postulates of Electrostatics in Free Space 74

3-3 Coulomb’s Law 77

3-3.1 Electric Field Due to a System of Discrete Charges 82

3-3.2 Electric Field Due to a Continuous Distributionof Charge 84

3-4 Gauss’s Law and Applications 87

3-5 Electric Potential 92

3-5.1 Electric Potential Due to a Charge Distribution 94

3-6 Conductors in Static Electric Field 100

3-7 Dielectrics in Static Electric Field 105

3-7.1 Equivalent Charge Distributions ofPolarized Dielectrics 106

3-8 Electric Flux Density and Dielectric Constant 109

3-8.1 Dielectric Strength 114

3-9 Boundary Conditions for Electrostatic Fields 116

3-10 Capacitance and Capacitors 121

3-10.1 Series and Parallel Connections of Capacitors 126

3-10.2 Capacitances in Multiconductor Systems 129

3-10.3 Electrostatic Shielding 132

3-11 Electrostatic Energy and Forces 133

3-11.1 Electrostatic Energy in Terms of Field Quantities 137

3-11.2 Electrostatic Forces 140

Review Questions 143

Problems 145

4Solution of Electrostatic Problems 152

4-1 Introduction 152

4-2 Poisson’s and Laplace’s Equations 152

4-3 Uniqueness of Electrostatic Solutions 157

4-4 Method of Images 159

4-4.1 Point Charge and Conducting Planes 161

4-4.2 Line Charge and Parallel Conducting Cylinder 162

4-4.3 Point Charge and Conducting Sphere 170

4-4.4 Charged Sphere and Grounded Plane 172

4-5 Boundary-Value Problems in Cartesian Coordinates 174

4-6 Boundary-Value Problems in Cylindrical Coordinates 183

4-7 Boundary-Value Problems in Spherical Coordinates 188

Review Questions 192

Problems 193

5Steady Electric Currents 198

5-1 Introduction 198

5-2 Current Density and Ohm’s Law 199

5-3 Electromotive Force and Kirchhoff’s Voltage Law 205

5-4 Equation of Continuity and Kirchhoff’s Current Law 208

5-5 Power Dissipation and Joule’s Law 210

5-6 Boundary Conditions for Current Density 211

5-7 Resistance Calculations 215

Review Questions 219

Problems 220

6Static Magnetic Fields 225

6-1 Introduction 225

6-2 Fundamental Postulates of Magnetostatics in Free Space 226

6-3 Vector Magnetic Potential 232

6-4 The Biot-Savart Law and Applications 234

6-5 The Magnetic Dipole 239

6-5.1 Scalar Magnetic Potential 242

6-6 Magnetization and Equivalent Current Densities 243

6-6.1 Equivalent Magnetization Charge Densities 247

6-7 Magnetic Field Intensity and Relative Permeability 249

6-8 Magnetic Circuits 251

6-9 Behavior of Magnetic Materials 257

6-10 Boundary Conditions for Magnetostatic Fields 262

6-11 Inductances and Inductors 266

6-12 Magnetic Energy 277

6-12.1 Magnetic Energy in Terms of Field Quantities 279

6-13 Magnetic Forces and Torques 281

6-13.1 Hall Effect 282

6-13.2 Forces and Torques on Current-Carrying Conductors 283

6-13.3 Forces and Torques in Terms of StoredMagnetic Energy 289

6-13.4 Forces and Torques in Terms of Mutual Inductance 292

Review Questions 294

Problems 296

7Time-Varying Fields and Maxwell’s Equations 307

7-1 Introduction 307

7-2 Faraday’s Law of Electromagnetic Induction 308

7-2.1 A Stationary Circuit in a Time-VaryingMagnetic Field 309

7-2.2 Transformers 310

7-2.3 A Moving Conductor in a Static Magnetic Field 314

7-2.4 A Moving Circuit in a Time-Varying Magnetic Field 317

7-3 Maxwell’s Equations 321

7-3.1 Integral Form of Maxwell’s Equations 323

7-4 Potential Functions 326

7-5 Electromagnetic Boundary Conditions 329

7-5.1 Interface between Two Lossless Linear Media 330

7-5.2 Interface between a Dielectric and aPerfect Conductor 331

7-6 Wave Equations and Their Solutions 332

7-6.1 Solution of Wave Equations for Potentials 333

7-6.2 Source-Free Wave Equations 334

7-7 Time-Harmonic Fields 335

7-7.1 The Use of Phasors—A Review 336

7-7.2 Time-Harmonic Electromagnetics 338

7-7.3 Source-Free Fields in Simple Media 340

7-7.4 The Electromagnetic Spectrum 343

Review Questions 346

Problems 347

8Plane Electromagnetic Waves 354

8-1 Introduction 354

8-2 Plane Waves in Lossless Media 355

8-2.1 Doppler Effect 360

8-2.2 Transverse Electromagnetic Waves 361

8-2.3 Polarization of Plane Waves 364

8-3 Plane Waves in Lossy Media 367

8-3.1 Low-Loss Dielectrics 368

8-3.2 Good Conductors 369

8-3.3 Ionized Gases 373

8-4 Group Velocity 375

8-5 Flow of Electromagnetic Power and the Poynting Vector 379

8-5.1 Instantaneous and Average Power Densities 382

8-6 Normal Incidence at a Plane Conducting Boundary 386

8-7 Oblique Incidence at a Plane Conducting Boundary 390

8-7.1 Perpendicular Polarization 390

8-7.2 Parallel Polarization 395

8-8 Normal Incidence at a Plane Dielectric Boundary 397

8-9 Normal Incidence at Multiple Dielectric Interfaces 401

8-9.1 Wave Impedance of the Total Field 403

8-9.2 Impedance Transformation with Multiple Dielectrics 404

8-10 Oblique Incidence at a Plane Dielectric Boundary 406

8-10.1 Total Reflection 408

8-10.2 Perpendicular Polarization 411

8-10.3 Parallel Polarization 414

Review Questions 417

Problems 419

9Theory and Applications of Transmission Lines 427

9-1 Introduction 427

9-2 Transverse Electromagnetic Wave along a Parallel-Plate Transmission Line 429

9-2.1 Lossy Parallel-Plate Transmission Lines 433

9-2.2 Microstrip Lines 435

9-3 General Transmission-Line Equations 437

9-3.1 Wave Characteristics on an InfiniteTransmission Line 439

9-3.2 Transmission-Line Parameters 444

9-3.3 Attenuation Constant from Power Relations 447

9-4 Wave Characteristics on Finite Transmission Lines 449

9-4.1 Transmission Lines as Circuit Elements 454

9-4.2 Lines with Resistive Termination 460

9-4.3 Lines with Arbitrary Termination 465

9-4.4 Transmission-Line Circuits 467

9-5 Transients on Transmission Lines 471

9-5.1 Reflection Diagrams 474

9-5.2 Pulse Excitation 478

9-5.3 Initially Charged Line 480

9-5.4 Line with Reactive Load 482

9-6 The Smith Chart 485

9-6.1 Smith-Chart Calculations for Lossy Lines 495

9-7 Transmission-Line Impedance Matching 497

9-7.1 Impedance Matching by Quarter-Wave Transformer 497

9-7.2 Single-Stub Matching 501

9-7.3 Double-Stub Matching 505

Review Questions 509

Problems 512

10Waveguides and Cavity Resonators 520

10-1 Introduction 520

10-2 General Wave Behaviors along Uniform Guiding Structures 521

10-2.1 Transverse Electromagnetic Waves 524

10-2.2 Transverse Magnetic Waves 525

10-2.3 Transverse Electric Waves 529

10-3 Parallel-Plate Waveguide 534

10-3.1 TM Waves between Parallel Plates 534

10-3.2 TE Waves between Parallel Plates 539

10-3.3 Energy-Transport Velocity 541

10-3.4 Attenuation in Parallel-Plate Waveguides 543

10-4 Rectangular Waveguides 547

10-4.1 TM Waves in Rectangular Waveguides 547

10-4.2 TE Waves in Rectangular Waveguides 551

10-4.3 Attenuation in Rectangular Waveguides 555

10-4.4 Discontinuities in Rectangular Waveguides 559

10-5 Circular Waveguides 562

10-5.1 Bessel’s Differential Equation andBessel Functions 563

10-5.2 TM Waves in Circular Waveguides 567

10-5.3 TE Waves in Circular Waveguides 569

10-6 Dielectric Waveguides 572

10-6.1 TM Waves along a Dielectric Slab 572

10-6.2 TE Waves along a Dielectric Slab 576

10-6.3 Additional Comments onDielectric Waveguides 579

10-7 Cavity Resonators 582

10-7.1 Rectangular Cavity Resonators 582

10-7.2 Quality Factor of Cavity Resonator 586

10-7.3 Circular Cavity Resonator 589

Review Questions 592

Problems 594

11Antennas and Radiating Systems 600

11-1 Introduction 600

11-2 Radiation Fields of Elemental Dipoles 602

11-2.1 The Elemental Electric Dipole 602

11-2.2 The Elemental Magnetic Dipole 605

11-3 Antenna Patterns and Antenna Parameters 607

11-4 Thin Linear Antennas 614

11-4.1 The Half-Wave Dipole 617

11-4.2 Effective Antenna Length 619

11-5 Antenna Arrays 621

11-5.1 Two-Element Arrays 622

11-5.2 General Uniform Linear Arrays 625

11-6 Receiving Antennas 631

11-6.1 Internal Impedance and Directional Pattern 632

11-6.2 Effective Area 634

11-6.3 Backscatter Cross Section 637

11-7 Transmit-Receive Systems 639

11-7.1 Friis Transmission Formula and Radar Equation 639

11-7.2 Wave Propagation near Earth’s Surface 642

11-8 Some Other Antenna Types 643

11-8.1 Traveling-Wave Antennas 643

11-8.2 Helical Antennas 645

11-8.3 Yagi-Uda Antenna 648

11-8.4 Broadband Antennas 650

11-9 Aperture Radiators 655

References 661

Review Questions 662

Problems 664

Appendixes 671

A Symbols and Units 671

A-1 Fundamental SI (Rationalized MKSA) Units 671

A-2 Derived Quantities 671

A-3 Multiples and Submultiples of Units 673

B Some Useful Material Constants 674

B-1 Constants of Free Space 674

B-2 Physical Constants of Electron and Proton 674

B-3 Relative Permittivities (Dielectric Constants) 675

B-4 Conductivities 675

B-5 Relative Permeabilities 676

C Index of Tables 677

General Bibliography 679

Answers to Selected Problems 681

Index 693

返回顶部