有限元方法 流体力学 第7版PDF电子书下载
- 电子书积分:16 积分如何计算积分?
- 作 者:(英)辛克维奇著
- 出 版 社:世界图书北京出版公司
- 出版年份:2015
- ISBN:9787510098512
- 页数:544 页
CHAPTER 1 Introduction to the Equations of Fluid Dynamics and the Finite Element Approximation 1
1.1 General remarks and classification of fluid dynamics problems discussed in this book 1
1.2 The governing equations of fluid dynamics 5
1.2.1 Velocity,strain rates,and stresses in fluids 5
1.2.2 Constitutive relations for fluids 6
1.2.3 Mass conservation 7
1.2.4 Momentum conservation:Dynamic equilibrium 7
1.2.5 Energy conservation and equation of state 8
1.2.6 Boundary conditions 10
1.2.7 Navier-Stokes and Euler equations 10
1.3 Inviscid,incompressible flow 12
1.3.1 Velocity potential solution 12
1.4 Incompressible(or nearly incompressible)flows 14
1.5 Numerical solutions:Weak forms,weighted residual,and finite element approximation 15
1.5.1 Strong and weak forms 15
1.5.2 Weighted residual approximation 17
1.5.3 The Galerkin finite element method 18
1.5.4 A finite volume approximation 25
1.6 Concluding remarks 28
References 28
CHAPTER 2 Convection-Dominated Problems:Finite Element Approximations to the Convection-Diffusion-Reaction Equation 31
2.1 Introduction 31
2.2 The steady-state problem in one dimension 34
2.2.1 General remarks 34
2.2.2 Petrov-Galerkin methods for upwinding in one dimension 39
2.2.3 Balancing diffusion in one dimension 43
2.2.4 A variational principle in one dimension 43
2.2.5 Galerkin least-squares approximation(GLS)in one dimension 45
2.2.6 Subgrid scale(SGS)approximation 46
2.2.7 The finite increment calculus(FIC)for stabilizing the convective-diffusion equation in one dimension 47
2.2.8 Higher-order approximations 48
2.3 The steady-state problem in two(or three)dimensions 49
2.3.1 General remarks 49
2.3.2 Streamline(upwind)Petrov-Galerkin weighting(SUPG) 49
2.3.3 Galerkin least squares(GLS)and finite increment calculus(FIC)in multidimensional problems 53
2.4 Steady state:Concluding remarks 54
2.5 Transients:Introductory remarks 54
2.5.1 Mathematical background 54
2.5.2 Possible discretization procedures 55
2.6 Characteristic-based methods 57
2.6.1 Mesh updating and interpolation methods 57
2.6.2 Characteristic-Galerkin procedures 58
2.6.3 A simple explicit characteristic-Galerkin procedure 60
2.6.4 Boundary conditions:Radiation 66
2.7 Taylor-Galerkin procedures for scalar variables 70
2.8 Steady-state condition 71
2.9 Nonlinear waves and shocks 71
2.10 Treatment of pure convection 76
2.11 Boundary conditions for convection-diffusion 78
2.12 Summary and concluding remarks 79
References 80
CHAPTER 3 The Characteristic-Based Split(CBS)Algorithm:A General Procedure for Compressible and Incompressible Flow 87
3.1 Introduction 87
3.2 Nondimensional form of the governing equations 89
3.3 Characteristic-based split(CBS)algorithm 90
3.3.1 The split:General remarks 90
3.3.2 The split:Temporal discretization 91
3.3.3 Spatial discretization and solution procedure 94
3.3.4 Mass diagonalization(lumping) 99
3.4 Explicit,semi-implicit,and nearly implicit forms 100
3.4.1 Fully explicit form 100
3.4.2 Semi-implicit form 100
3.4.3 Quasi-(nearly)implicit form 101
3.4.4 Evaluation of time step limits:Local and global time steps 101
3.5 Artificial compressibility and dual time stepping 103
3.5.1 Artificial compressibility for steady-state problems 103
3.5.2 Artificial compressibility in transient problems(dual time stepping) 104
3.6 "Circumvention"of the Babu?ka-Brezzi(BB)restrictions 106
3.7 A single-step version 107
3.8 Splitting error 109
3.8.1 Elimination of first-order pressure error 110
3.9 Boundary conditions 110
3.9.1 Fictitious boundaries 110
3.9.2 Real boundaries 112
3.9.3 Application of real boundary conditions in the discretization using the CBS algorithm 112
3.10 The performance of two-and single-step algorithms on an inviscid problem 114
3.11 Performance of dual time stepping to remove pressure error 116
3.12 Concluding remarks 118
References 118
CHAPTER 4 Incompressible Newtonian Laminar Flows 127
4.1 Introduction and the basic equations 127
4.2 Use of the CBS algorithm for incompressible flows 129
4.2.1 The fully explicit artificial compressibility form 129
4.2.2 The semi-implicit form 129
4.2.3 Quasi-implicit solution 139
4.3 Adaptive mesh refinement 140
4.3.1 Second gradient(curvature)based refinement 143
4.3.2 Local patch interpolation:Superconvergent values 145
4.3.3 Estimation of second derivatives at nodes 146
4.3.4 Element elongation 146
4.3.5 First derivative(gradient)based refinement 148
4.3.6 Choice of variables 149
4.3.7 An example 149
4.4 Adaptive mesh generation for transient problems 149
4.5 Slow flows:Mixed and penalty formulations 151
4.5.1 Analogy with incompressible elasticity 151
4.5.2 Mixed and penalty discretization 151
4.6 Concluding remarks 153
References 155
CHAPTER 5 Incompressible Non-Newtonian Flows 163
5.1 Introduction 163
5.2 Non-Newtonian flows:Metal and polymer forming 163
5.2.1 Non-Newtonian flows including viscoplasticity and plasticity 163
5.2.2 Steady-state problems of forming 166
5.2.3 Transient problems with changing boundaries 169
5.2.4 Elastic springback and viscoelastic fluids 174
5.3 Viscoelastic flows 177
5.3.1 Governing equations 179
5.4 Direct displacement approach to transient metal forming 185
5.5 Concluding remarks 187
References 188
CHAPTER 6 Free Surface and Buoyancy Driven Flows 195
6.1 Introduction 195
6.2 Free surface flows 195
6.2.1 General remarks 195
6.2.2 Lagrangian method 197
6.2.3 Eulerian methods 200
6.2.4 Arbitrary Langrangian-Eulerian(ALE)method 210
6.3 Buoyancy driven flows 215
6.4 Concluding remarks 218
References 219
CHAPTER 7 Compressible High-Speed Gas Flow 225
7.1 Introduction 225
7.2 The governing equations 226
7.3 Boundary conditions:Subsonic and supersonic flow 227
7.3.1 Euler equation 228
7.3.2 Navier-Stokes equations 229
7.4 Numerical approximations and the CBS algorithm 230
7.5 Shock capture 231
7.5.1 Second derivative-based methods 232
7.5.2 Residual-based methods 233
7.6 Variable smoothing 234
7.7 Some preliminary examples for the Euler equation 234
7.8 Adaptive refinement and shock capture in Euler problems 238
7.8.1 General 238
7.8.2 The h-refinement process and mesh enrichment 243
7.8.3 h-refinement and remeshing in steady-state two-dimensional problems 245
7.9 Three-dimensional inviscid examples in steady state 246
7.9.1 Solution of the flow pattern around a complete aircraft 253
7.9.2 THRUST:The supersonic car 255
7.10 Transient two-and three-dimensional problems 256
7.11 Viscous problems in two dimensions 260
7.11.1 Adaptive refinement in both shock and boundary layer 262
7.11.2 Special adaptive refinement for boundary layers and shocks 264
7.12 Three-dimensional viscous problems 271
7.13 Boundary layer:Inviscid Euler solution coupling 271
7.14 Concluding remarks 273
References 274
CHAPTER 8 Turbulent Flows 283
8.1 Introduction 283
8.1.1 Time averaging 284
8.1.2 Relation between κ,ε,and vT 286
8.2 Treatment of incompressible turbulent flows 286
8.2.1 Reynolds-averaged Navier-Stokes 286
8.2.2 One-equation models 287
8.2.3 Two-equation models 288
8.2.4 Nondimensional form of the governing equations 289
8.2.5 Shortest distance to a solid wall 291
8.2.6 Solution procedure for turbulent flow equations 292
8.3 Treatment of compressible flows 298
8.3.1 Mass-weighted(Favre)time averaging 300
8.4 Large eddy simulation(LES) 303
8.5 Detached eddy simulation(DES)and monotonically integrated LES(MILES) 305
8.6 Direct numerical simulation(DNS) 306
8.7 Concluding remarks 306
References 306
CHAPTER 9 Generalized Flow and Heat Transfer in Porous Media 309
9.1 Introduction 309
9.2 A generalized porous medium flow approach 310
9.2.1 Nondimensional scales 313
9.3 Discretization procedure 315
9.3.1 Semi-and quasi-implicit forms 315
9.4 Forced convection 316
9.5 Natural convection 318
9.5.1 Constant-porosity medium 319
9.6 Concluding remarks 323
References 324
CHAPTER 10 Shallow-Water Problems 327
10.1 Introduction 327
10.2 The basis of the shallow-water equations 328
10.3 Numerical approximation 332
10.4 Examples of application 334
10.4.1 Transient one-dimensional problems:A performance assessment 334
10.4.2 Two-dimensional periodic tidal motions 334
10.4.3 Tsunami waves 339
10.4.4 Steady-state solutions 343
10.5 Drying areas 346
10.6 Shallow-water transport 346
10.7 Concluding remarks 349
References 349
CHAPTER 11 Long and Medium Waves 355
11.1 Introduction and equations 355
11.2 Waves in closed domains:Finite element models 356
11.3 Difficulties in modeling surface waves 358
11.4 Bed friction and other effects 358
11.5 The short-wave problem 359
11.6 Waves in unbounded domains(exterior surface wave problems) 359
11.6.1 Background to wave problems 359
11.6.2 Wave diffraction 360
11.6.3 Incident waves,domain integrals,and nodal values 362
11.7 Unbounded problems 362
11.8 Local nonreflecting boundary conditions(NRBCs) 363
11.8.1 Sponge layers or perfectly matched layers(PMLs) 365
11.9 Infinite elements 366
11.9.1 Mapped periodic(unconjugated)infinite elements 366
11.9.2 Ellipsoidal type infinite elements of Burnett and Holford 368
11.9.3 Wave envelope(or conjugated)infinite elements 369
11.9.4 Accuracy of infinite elements 371
11.9.5 Other applications 371
11.9.6 Trefftz-type infinite elements 372
11.10 Convection and wave refraction 372
11.11 Transient problems 374
11.12 Linking to exterior solutions(or DtN mapping) 375
11.12.1 Linking to boundary integrals 376
11.12.2 Linking to series solutions 376
11.13 Three-dimensional effects in surface waves 377
11.13.1 Large-amplitude water waves 379
11.13.2 Cnoidal and solitary waves 381
11.13.3 Stokes waves 381
11.14 Concluding remarks 383
References 383
CHAPTER 12 Short Waves 389
12.1 Introduction 389
12.2 Background 389
12.3 Errors in wave modeling 391
12.4 Recent developments in short-wave modeling 391
12.5 Transient solution of electromagnetic scattering problems 392
12.6 Finite elements incorporating wave shapes 392
12.6.1 Shape functions using products of polynomials and waves 394
12.6.2 Shape functions using sums of polynomials and waves 397
12.6.3 The discontinuous enrichment method 398
12.6.4 Ultra weak formulation 399
12.6.5 Trefftz-type finite elements for waves 401
12.7 Refraction 404
12.7.1 Wave speed refraction 405
12.7.2 Refraction caused by flows 410
12.8 Spectral finite elements for waves 412
12.9 Discontinuous Galerkin finite elements(DGFE) 414
12.10 Concluding remarks 415
References 417
CHAPTER 13 Fluid-Structure Interaction 423
13.1 Introduction 423
13.2 One-dimensional fluid-structure interaction 424
13.2.1 Equations 424
13.2.2 Characteristic analysis 427
13.2.3 Boundary conditions 429
13.2.4 Solution method:Taylor-Galerkin method 430
13.2.5 Some results 433
13.3 Multidimensional problems 435
13.3.1 Equations and discretization 435
13.3.2 Segregated approach 440
13.3.3 Mesh moving procedures 441
13.4 Concluding remarks 446
References 446
CHAPTER 14 Biofluid Dynamics 451
14.1 Introduction 451
14.2 Flow in human arterial system 451
14.2.1 Heart 452
14.2.2 Reflections 458
14.2.3 Aortic valve 458
14.2.4 Vessel branching 460
14.2.5 Terminal vessels 462
14.2.6 Numerical solution 464
14.3 Image-based subject-specific flow modeling 470
14.3.1 Image segmentation 471
14.3.2 Geometrical potential force(GPF) 471
14.3.3 Numerical solution,initial and boundary conditions 472
14.3.4 Domain discretization 472
14.3.5 Flow solution 473
14.4 Concluding remarks 479
References 479
CHAPTER 15 Computer Implementation of the CBS Algorithm 485
15.1 Introduction 485
15.2 The data input module 486
15.2.1 Mesh data:Nodal coordinates and connectivity 486
15.2.2 Boundary data 486
15.2.3 Other necessary data and flags 487
15.2.4 Preliminary subroutines and checks 487
15.3 Solution module 487
15.3.1 Time step 488
15.3.2 Shock capture 488
15.3.3 CBS algorithm:Steps 489
15.3.4 Boundary conditions 489
15.3.5 Solution of simultaneous equations:Semi-implicit form 490
15.3.6 Different forms of energy equation 490
15.3.7 Convergence to steady state 490
15.4 Output module 490
References 490
APPENDIX A Self-Adjoint Differential Equations 493
APPENDIX B Nonconservative Form of Navier-Stokes Equations 495
APPENDIX C Computing the Drag Force and Stream Function 497
APPENDIX D Convection-Diffusion Equations:Vector-Valued Variables 499
APPENDIX E Integration Formulae 509
APPENDIX F Edge-Based Finite Element Formulation 511
APPENDIX G Boundary Layer-Inviscid Flow Coupling 515
APPENDIX H Multigrid Method 519
APPENDIX I Mass-Weighted Averaged Turbulence Transport Equations 521
Author Index 525
Subject Index 539
- 《流体力学》张扬军,彭杰,诸葛伟林编著 2019
- 《工程静力学》王科盛主编 2019
- 《空气动力学 7 飘浮的秘密》(加)克里斯·费里著 2019
- 《材料力学 上》杨在林,杨丽红主编 2011
- 《流体力学与传热学》潘小勇编著 2019
- 《材料力学 第2版》严圣平,马占国 2018
- 《海洋油气计算流体力学》朱红钧编 2016
- 《临近空间高超声速飞行器计算空气动力学》艾邦成著 2020
- 《写给孩子的趣味力学》(俄)雅科夫·伊西达洛维奇·别莱利曼著 2019
- 《工程力学》伍春发,张凤,高文秀主编 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017