化学计量学基础PDF电子书下载
- 电子书积分:9 积分如何计算积分?
- 作 者:梁逸曾,易伦朝编著
- 出 版 社:上海:华东理工大学出版社
- 出版年份:2010
- ISBN:9787562828716
- 页数:196 页
Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics 3
1.1 Chemometrics:Definition and Its Brief History 3
1.2 The Relationship between Analytical Chemistry and Chemometries 4
1.3 The Relationship between Chemometrics,Chemoinformatics and Bioinformatic 7
1.4 Necessary Knowledge of Mathematics 9
1.4.1 Vector and Its Calculation 10
1.4.2 Matrix and Its Calculation 19
Chapter 2 Chemical Experiment Design 39
2.1 Introduction 39
2.2 Factorial Design and Its Rational Analysis 41
2.2.1 Computation of Effects Using Sign Tables 44
2.2.2 Normal Plot of Effects and Residuals 45
2.3 Fractional Factorial Design 47
2.4 Orthogonal Design and Orthogonal Array 52
2.4.1 Definition of Orthogonal Design Table 53
2.4.2 Orthogonal Arrays and Their Inter-effect Tables 54
2.4.3 Linear Graphs of Orthogonal Array and Its Applications 55
2.5 Uniform Experimental Design and Uniform Design Table 55
2.5.1 Uniform Design Table and Its Construction 56
2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design 59
2.5.3 Uniform Design for Pseudo-level 60
2.5.4 An Example for Optimization of Eleetropherotic Separation Using Uniform Design 61
2.6 D-Optimal Experiment Design 65
2.7 Optimization Based on Simplex and Experiment Design 68
2.7.1 Constructing an Initial Simplex to Start the Experiment Design 69
2.7.2 Simplex Searching and Optimization 70
Chapter 3 Processing of Analytic Signals 77
3.1 Smoothing Methods of Analytical Signals 77
3.1.1 Moving-Window Average Smoothing Method 77
3.1.2 Savitsky-Golay Filter 77
3.2 Derivative Methods of Analytical Signals 83
3.2.1 Simple Difference Method 83
3.2.2 Moving-Window Polynomial Least-Squares Fitting Method 84
3.3 Background Correction Method of Analytical Signals 89
3.3.1 Penalized Least Squares Algorithm 89
3.3.2 Adaptive Iteratively Reweighted Procedure 90
3.3.3 Some Examples for Correcting the Baseline from Different Instruments 92
3.4 Transformation Methods of Analytical Signals 94
3.4.1 Physical Meaning of the Convolution Algorithm 94
3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation 96
3.4.3 Fourier Transformation 99
Appendix 1:A Matlab Program for Smoothing the Analytical Signals 108
Appendix 2:A Matlab Program for Demonstration of FT Applied to Smoothing 112
Chapter 4 Multivariate Calibration and Multivariate Resolution 116
4.1 Multivariate Calibration Methods for White Analytical Systems 116
4.1.1 Direct Calibration Methods 116
4.1.2 Indirect Calibration Methods 121
4.2 Multivariate Calibration Methods for Grey Analytical Systems 126
4.2.1 Veetoral Calibration Methods 127
4.2.2 Matrix Calibration Methods 127
4.3 Multivariate Resolution Methods for Black Analytical Systems 129
4.3.1 Self-modeling Curve Resolution Method 131
4.3.2 Iterative Target Transformation Factor Analysis 134
4.3.3 Evolving Factor Analysis and Related Methods 137
4.3.4 Window Factor Analysis 141
4.3.5 Heuristic Evolving Latent Projections 145
4.3.6 Subwindow Factor Analysis 152
4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems 154
4.4.1 Principal Component Regression(PCR) 156
4.4.2 Partial Least Squares(PLS) 157
4.4.3 Leave-one-out Cross-validation 159
Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data5.1 Introduction 169
5.1.1 Chemieal Pattern Space 169
5.1.2 Distance in Pattern Space and Measures of Similarity 171
5.1.3 Feature Extraction Methods 173
5.1.4 Pretreatment Methods for Pattern Recognition 173
5.2 Supervised Pattern Recognition Methods:Discriminant Analysis Methods 174
5.2.1 Discrimination Method Based on Euclidean Distance 175
5.2.2 Discrimination Method Based on Mahalanobis Distance 175
5.2.3 Linear Learning Machine 176
5.2.4 k-Nearest Neighbors Discrimination Method 177
5.3 Unsupervised Pattern Recognition Methods:Clustering Analysis Methods 179
5.3.1 Minimum Spanning Tree Method 179
5.3.2 k-means Clustering Method 181
5.4 Visual Dimensional Reduction Based on Latent Proiections 183
5.4.1 Proj ection Discrimination Method Based on Principal Component Analysis 183
5.4.2 SMICA Method Based on Principal Component Analysis 186
5.4.3 Classification Method Based on Partial Least Squares 193
- 《市政工程基础》杨岚编著 2009
- 《零基础学会素描》王金著 2019
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《生物质甘油共气化制氢基础研究》赵丽霞 2019
- 《分析化学》陈怀侠主编 2019
- 《花时间 我的第一堂花艺课 插花基础技法篇》(日)花时间编辑部编;陈洁责编;冯莹莹译 2020
- 《Photoshop CC 2018基础教程》温培利,付华编著 2019
- 《看视频零基础学英语口语》宋德伟 2019
- 《化学反应工程》许志美主编 2019
- 《胃癌基础病理》(日)塚本彻哉编者;宫健,刘石译者 2019
- 《市政工程基础》杨岚编著 2009
- 《家畜百宝 猪、牛、羊、鸡的综合利用》山西省商业厅组织技术处编著 1959
- 《《道德经》200句》崇贤书院编著 2018
- 《高级英语阅读与听说教程》刘秀梅编著 2019
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《看图自学吉他弹唱教程》陈飞编著 2019
- 《法语词汇认知联想记忆法》刘莲编著 2020
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《国家社科基金项目申报规范 技巧与案例 第3版 2020》文传浩,夏宇编著 2019
- 《流体力学》张扬军,彭杰,诸葛伟林编著 2019