当前位置:首页 > 数理化
弹性力学  英文版
弹性力学  英文版

弹性力学 英文版PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:伍章健,武海军,韩峰编著
  • 出 版 社:北京:北京理工大学出版社
  • 出版年份:2010
  • ISBN:9787564032678
  • 页数:239 页
图书介绍:本书主要介绍弹性力学经典内容和作者最新研究成果,整个结构体系综合了北京理工大学和英国曼彻斯特大学多年来在弹性力学教学中的大纲、内容和成果。为适应当前高等教育对双语教学的发展需求,本书内容的安排和撰写在参考经典著作和最新教研成果的基础上,更能适应读者在双语教学环境下使用。通过使用和阅读本书,结合中文教材能够学到弹性力学的基础知识、标准术语,提高专业英语能力。本书可作为工科类高等学校,尤其是力学类的高年级本科生和研究生双语课程和教学参考书,或者作为工程师、研究人员和初学者的英文参考书。
《弹性力学 英文版》目录

CHAPTER 1 BASIC ASSUMPTIONS AND MATHEMATICAL PRELIMINARIES 1

1.1 Introduction 1

1.2 Basic Assumptions 2

1.3 Coordinate Systems and Transformations 4

1.4 Vector and Matrix Notations and Their Operations 5

1.5 Divergence Theorem 8

Problems/Tutorial Questions 9

CHAPTER 2 STRESSES 10

2.1 Stress and the Stress Tensor 10

2.2 Equilibrium Equations 14

2.3 Traction Boundary Conditions 15

2.4 Stresses on an Oblique Plane 17

2.5 Principal Stresses 18

2.6 Stationary and Octahedral Shear Stresses 22

2.7 Equilibrium Equations in Curvilinear Coordinates 25

Problems/Tutorial Questions 27

CHAPTER 3 STRAINS 30

3.1 Strains 30

3.2 Finite Deformations 33

3.3 Strains in a Given Direction and Principal Strains 39

3.4 Stationary Shear Strains 43

3.5 Compatibility 45

3.6 Kinematic and Compatibility Equations in Curvilinear Coordinates 47

3.7 Concluding Remarks 50

Problems/Tutorial Questions 51

CHAPTER 4 FORMULATION OF ELASTICITY PROBLEMS 54

4.1 Strain Energy Density Function 54

4.2 Generalised Hooke's Law 58

4.3 Initial Stresses and Initial Strains 72

4.4 Governing Equations and Boundary Conditions 73

4.5 General Solution Techniques 75

4.6 St.Venant's Principle 76

Problems/Tutorial Questions 77

CHAPTER 5 TWO-DIMENSIONAL ELASTICITY 80

5.1 Plane Strain Problems 80

5.2 Plane Stress Problems 83

5.3 Similarities and Differences Between Plane Strain/Plane Stress Problems 86

5.4 Airy Stress Function and Polynomial Solutions 86

5.5 Polar Coordinates 93

5.6 Axisymmetric Stress Distributions 96

5.7 Rotating Discs 99

5.8 Stresses Around a Circular Hole in a Plate Subjected to Equal Biaxial Tension-Compression(Pure Shear in the 45°Direction) 103

5.9 Stress Concentration Around a Circular Hole in a Plate Subjected to Uniaxial Tension 105

5.10 Concluding Remarks 107

Problems/Tutorial Questions 107

CHAPTER 6 TORSION OF BARS 114

6.1 Torsion of Bars in Strength of Materials 114

6.2 Warping 114

6.3 Prandtl's Stress Function 119

6.4 Torque 120

6.5 Bars of Circular and Elliptical Cross-Sections 121

6.6 Thin-Walled Structures in Torsion 124

6.7 Analogies 127

Problems/Tutorial Questions 128

CHAPTER 7 BENDING OF BARS 130

7.1 Bending Theory in Strength of Materials 130

7.2 Elasticity Formulation of Bending of Bars 131

7.3 Stress Resultants and Shear Centre 135

7.4 Bending of a Bar of a Circular Cross-Section 136

7.5 Bending of a Bar of an Elliptical Cross-Section 137

7.6 Analogies 138

Problems/Tutorial Questions 139

CHAPTER 8 THE STATE SPACE METHOD OF 3D ELASTICITY 140

8.1 Concept of State and State Variables 140

8.2 Solution for a Linear Time-Invariant System 142

8.3 Calculation of e[A]t 144

8.4 Solution of Linear Time-Variant System 149

8.5 State Variable Equation of Elasticity 153

8.6 Application of State Space Method 157

8.7 Conclusions 166

Problems/Tutorial Questions 166

CHAPTER 9 BENDING OF PLATES 168

9.1 Love-Kirchhoff Hypotheses 168

9.2 The Displacement Fields 169

9.3 Strains and Generalised Strains 170

9.4 Bending Moments 171

9.5 The Governing Equation 172

9.6 Generalised Forces 173

9.7 Boundary Conditions 175

9.8 Rectangular Plates 179

9.9 Circular Plates 183

Problems/Tutorial Questions 188

CHAPTER 10 ENERGY PRINCIPLES 191

10.1 Introduction 191

10.2 Work,Strain Energy and Strain Complementary Energy 191

10.3 Principle of Virtual Work 197

10.4 Application of the Principle of Virtual Work 200

10.5 The Reciprocal Law of Betti 201

10.6 Principle of Minimum Potential Energy 203

10.7 Principle of Virtual Complementary Work 205

10.8 Principle of Minimum Complementary Energy 207

10.9 Castigliano's Theorems 208

10.10 Application of the Principles of Minimum Strain Energy 211

10.11 Rayleigh-Ritz Method 213

Problems/Tutorial Questions 216

CHAPTER 11 SPECIAL TOPICS FOR ELASTICITY 219

11.1 Thermal Elasticity 219

11.2 Propagation of Elastic Waves 226

11.3 Strength Theory,Crack and Fracture 230

Problems/Tutorial Questions 236

REFERENCES 238

返回顶部