群的上同调PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:(美)布朗编著
- 出 版 社:世界图书广东出版公司
- 出版年份:2009
- ISBN:9787510004643
- 页数:308 页
Introduction 1
CHAPTER Ⅰ Some Homological Algebra 4
0.Review of Chain Complexes 4
1.Free Resolutions 10
2.Group Rings 12
3.G-Modules 13
4.Resolutions of Z Over ZG via Topology 14
5.The Standard Resolution 18
6.Periodic Resolutions via Free Actions on Spheres 20
7.Uniqueness of Resolutions 21
8.Projective Modules 26
Appendix. Review of Regular Coverings 31
CHAPTER Ⅱ The Homology of a Group 33
1.Generalities 33
2.Co-invariants 34
3.The Definition of H*G 35
4.Topological Interpretation 36
5.Hopf's Theorems 41
6.Functoriality 48
7.The Homology of Amalgamated Free Products 49
Appendix. Trees and Amalgamations 52
CHAPTER Ⅲ Homology and Cohomology with Coefficients 55
0.Preliminaries on ?G and HomG 55
1.Definition of H*(G,M)and H*(G,M) 56
2.Tor and Ext 60
3.Extension and Co-extension of Scalars 62
4.Injective Modules 65
5.Induced and Co-induced Modules 67
6.H* and H* as Functors of the Coefficient Module 71
7.Dimension Shifting 74
8.H* and H* as Functors of Two Variables 78
9.The Transfer Map 80
10.Applications of the Transfer 83
CHAPTER Ⅳ Low Dimensional Cohomology and Group Extensions 86
1.Introduction 86
2.Split Extensions 87
3.The Classification of Extensions with Abelian Kernel 91
4.Application:p-Groups with a Cyclic Subgroup of Index p 97
5.Crossed Modules and H3(Sketch) 102
6.Extensions With Non-Abelian Kernel(Sketch) 104
CHAPTER Ⅴ Products 107
1.The Tensor Product of Resolutions 107
2.Cross-products 108
3.Cup and Cap Products 109
4.Composition Products 114
5.The Pontryagin Product 117
6.Application:Calculation of the Homology of an Abelian Group 121
CHAPTER Ⅵ Cohomology Theory of Finite Groups 128
1.Introduction 128
2.Relative Homological Algebra 129
3.Complete Resolutions 131
4.Definition of ? 134
5.Properties of ? 136
6.Composition Products 142
7.A Duality Theorem 144
8.Cohomologically Trivial Modules 148
9.Groups with Periodic Cohomology 153
CHAPTER Ⅶ Equivariant Homology and Spectral Sequences 161
1.Introduction 161
2.The Spectral Sequence of a Filtered Complex 161
3.Double Complexes 164
4.Example:The Homology of a Union 166
5.Homology of a Group with Coefficients in a Chain Complex 168
6.Example:The Hochschild-Serre Spectral Sequence 171
7.Equivariant Homology 172
8.Computation of d1 175
9.Example:Amalgamations 178
10.Equivariant Tate Cohomology 180
CHAPTER Ⅷ Finiteness Conditions 183
1.Introduction 183
2.Cohomological Dimension 184
3.Serre's Theorem 190
4.Resolutions of Finite Type 191
5.Groups of Type FPn 197
6.Groups of Type FP and FL 199
7.Topological Interpretation 205
8.Further Topological Results 210
9.Further Examples 213
10.Duality Groups 219
11.Virtual Notions 225
CHAPTER Ⅸ Euler Characteristics 230
1.Ranks of Projective Modules:Introduction 230
2.The Hattori-Stallings Rank 231
3.Ranks Over Commutative Rings 235
4.Ranks Over Group Rings;Swan's Theorem 239
5.Consequences of Swan's Theorem 242
6.Euler Characteristics of Groups:The Torsion-Free Case 246
7.Extension to Groups with Torsion 249
8.Euler Characteristics and Number Theory 253
9.Integrality Properties of x(Γ) 257
10.Proof of Theorem 9.3;Finite Group Actions 258
11.The Fractional Part of x(Γ) 261
12.Acyclic Covers;Proof of Lemma 11.2 265
13.The p-Fractional Part of x(Γ) 266
14.A Formula for xг(?) 270
CHAPTER Ⅹ Farrell Cohomology Theory 273
1.Introduction 273
2.Complete Resolutions 273
3.Definition and Properties of ?*(Γ) 277
4.Equivariant Farrell Cohomology 281
5.Cohomologically Trivial Modules 287
6.Groups with Periodic Cohomology 288
7.?*(Γ)and the Ordered Set of Finite Subgroups of Γ 291
References 295
Notation Index 301
Index 303
- 《海岸带经济与管理》朱坚真,王锋主编;徐小怡,刘汉威,何时都副主编;朱坚真,王锋,徐小怡,刘汉斌,何时都,毛小敏,秦运巧等编著;张登义,鹿守本顾问 2013
- 《茄果类蔬菜科学施肥》张菊平,赵要尊,熊法亭编著 2013
- 《融进三千里江山的英魂》中华文化发展促进会编 2012
- 《微积分习题与试题解析教程 第2版》陈仲主编 2013
- 《妊娠与分娩》黄海珍编著 2001
- 《许浚与《东医宝鉴》》车武编著 2012
- 《十二五国家重点图书国医大师经验良方赏析丛书 国医大师颜德馨经验良方赏析》卢祥之主编 2013
- 《2012年国家司法考试 卷4高分突破 第3版 2012年版》众合教育编;李建伟,邹建章,袁登明等编著 2012
- 《北仑范式 区域推进式农村学前教育发展模式探索》刘华,李妮,吴文艳等编著 2013
- 《最新中学生获奖作文1000篇》张在军主编 2013
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017
- 《乐队伴奏长笛世界名曲集 4》芭芭拉·哈斯勒-哈瑟 2017
- 《世界名著阅读经典 欧也妮·葛朗台 高老头 全译本 12-16岁》(法)巴尔扎克著 2017