当前位置:首页 > 数理化
微分几何基础  第1卷  中译本
微分几何基础  第1卷  中译本

微分几何基础 第1卷 中译本PDF电子书下载

数理化

  • 电子书积分:11 积分如何计算积分?
  • 作 者:小林昭林,野水克己著
  • 出 版 社:北京:科学出版社
  • 出版年份:2010
  • ISBN:9787030264732
  • 页数:266 页
图书介绍:本书概括了20世纪70年代以前微分几何的主要成果,并提供了比较全面、详实的参考文献。
《微分几何基础 第1卷 中译本》目录

第一章 微分流形 1

1.1微分流形 1

1.2张量代数 13

1.3张量场 20

1.4 Lie群 30

1.5纤维丛 39

第二章 联络理论 48

2.1主纤维丛上的联络 48

2.2联络的存在与扩张 51

2.3平行性 52

2.4和乐群 54

2.5曲率形式和结构方程 57

2.6联络的映射 60

2.7约化定理 63

2.8和乐定理 67

2.9平坦联络 69

2.10局部和乐群与无穷小和乐群 71

2.11不变联络 78

第三章 线性联络和仿射联络 87

3.1向量丛上的联络 87

3.2线性联络 91

3.3仿射联络 97

3.4展开 101

3.5曲率张量和挠率张量 102

3.6测地线 107

3.7在局部坐标系中的表示 109

3.8法坐标 114

3.9线性无穷小和乐群 118

第四章 Riemann联络 121

4.1 Riemann度量 121

4.2 Riemann联络 124

4.3法坐标和凸邻域 128

4.4完备性 136

4.5和乐群 141

4.6 de Rham分解定理 147

4.7仿射和乐群 151

第五章 曲率形式和空间形式 155

5.1代数预备知识 155

5.2截曲率 157

5.3常曲率空间 160

5.4平坦仿射联络和Riemann联络 165

第六章 变换 178

6.1仿射映射和仿射变换 178

6.2无穷小仿射变换 181

6.3等距变换与无穷小等距 186

6.4和乐等距与无穷小等距 193

6.5 Ricci张量和无穷小等距 196

6.6局部同构的扩张 199

6.7等价问题 202

附录1 线性常微分方程 210

附录2 连通的局部紧度量空间是可分的 211

附录3 单位分解 214

附录4 Lie群的弧连通子群 216

附录5 O(n)的不可约子群 217

附录6 Green定理 220

附录7 因子分解引理 223

注释1 联络与和乐群 225

注释2 完备仿射联络和Riemann联络 228

注释3 Ricci张量和纯量曲率 230

注释4 常正曲率空间 232

注释5 平坦Riemann流形 235

注释6 曲率的平移 238

注释7 对称空间 239

注释8 具有循环曲率的线性联络 242

注释9 几何结构的自同构群 244

注释10 具有极大维数的等距变换群和仿射变换群 245

注释11 Riemann流形的保形变换 247

基本符号一览表 249

参考文献 251

索引 260

返回顶部