Invitation to fixed-parameter algorithmsPDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:Rolf Niedermeier
- 出 版 社:Oxford University Press
- 出版年份:2006
- ISBN:0198566077
- 页数:300 页
Ⅰ FOUNDATIONS 3
1 Introduction to Fixed-Parameter Algorithms 3
1.1 The satisfiability problem 4
1.2 An example from railway optimization 7
1.3 A communication problem in tree networks 10
1.4 Summary 12
1.5 Exercises 13
1.6 Bibliographical remarks 14
2 Preliminaries and Agreements 17
2.1 Basic sets and problems 17
2.2 Model of computation and running times 17
2.3 Strings and graphs 18
2.4 Complexity and approximation 20
2.5 Bibliographical remarks 21
3 Parameterized Complexity Theory —A Primer 22
3.1 Basic theory 22
3.2 Interpreting fixed-parameter tractability 27
3.3 Exercises 29
3.4 Bibliographical remarks 29
4 Vertex Cover An Illustrative Example 31
4.1 Parameterizing 32
4.2 Specializing 33
4.3 Generalizing 34
4.4 Counting or enumerating 34
4.5 Lower bounds 35
4.6 Implementing and applying 35
4.7 Using vertex cover structure for other problems 36
4.8 Exercises 38
4.9 Bibliographical remarks 38
5 The Art of Problem Parameterization 41
5.1 Parameter really small? 41
5.2 Guaranteed parameter value? 42
5.3 More than one obvious parameterization? 43
5.4 Close to “trivial” problem instances? 45
5.5 Exercises 47
5.6 Bibliographical remarks 47
6 Summary and Concluding Remarks 49
Ⅱ ALGORITHMIC METHODS 53
7 Data Reduction and Problem Kernels 53
7.1 Basic definitions and facts 55
7.2 Maximum Satisfiability 58
7.3 Cluster Editing 60
7.4 Vertex Cover 64
7.4.1 Kernelization based on matching 64
7.4.2 Kernelization based on linear programming 68
7.4.3 Kernelization based on crown structures 69
7.4.4 Comparison and discussion 72
7.5 3-Hitting Set 72
7.6 Dominating Set in Planar Graphs 74
7.6.1 The neighborhood of a single vertex 74
7.6.2 The neighborhood of a pair of vertices 77
7.6.3 Reduced graphs and the problem kernel 79
7.7 On lower bounds for problem kernels 80
7.8 Summary and concluding remarks 82
7.9 Exercises 83
7.10 Bibliographical remarks 85
8 Depth-Bounded Search Trees 88
8.1 Basic definitions and facts 91
8.2 Cluster Editing 93
8.3 Vertex Cover 98
8.4 Hitting Set 101
8.5 Closest String 103
8.6 Dominating Set in Planar Graphs 107
8.6.1 Data reduction rules 108
8.6.2 Main result and some remarks 109
8.7 Interleaving search trees and kernelization 110
8.7.1 Basic methodology 111
8.7.2 Interleaving is necessary 113
8.8 Automated search tree generation and analysis 114
8.9 Summary and concluding remarks 119
8.10 Exercises 120
8.11 Bibliographical remarks 121
9 Dynamic Programming 124
9.1 Basic definitions and facts 125
9.2 Knapsack 126
9.3 Steiner Problem in Graphs 128
9.4 Multicommodity Demand Flow in Trees 131
9.5 Tree-structured variants of Set Cover 136
9.5.1 Basic definitions and facts 136
9.5.2 Algorithm for Path-like Weighted Set Cover 139
9.5.3 Algorithm for Tree-like Weighted Set Cover 140
9.6 Shrinking search trees 145
9.7 Summary and concluding remarks 146
9.8 Exercises 147
9.9 Bibliographical remarks 148
10 Tree Decompositions of Graphs 150
10.1 Basic definitions and facts 151
10.2 On the construction of tree decompositions 153
10.3 Planar graphs 155
10.4 Dynamic programming for Vertex Cover 160
10.5 Dynamic programming for Dominating Set 164
10.6 Monadic second-order logic (MSO) 169
10.7 Related graph width parameters 172
10.8 Summary and concluding remarks 174
10.9 Exercises 175
10.10Bibliographical remarks 176
11 Further Advanced Techniques 177
11.1 Color-coding 178
11.2 Integer linear programming 181
11.3 Iterative compression 184
11.3.1 Vertex Cover 185
11.3.2 Feedback Vertex Set 187
11.4 Greedy localization 190
11.4.1 Set Splitting 191
11.4.2 Set Packing 193
11.5 Graph minor theory 195
11.6 Summary and concluding remarks 197
11.7 Exercises 198
11.8 Bibliographical remarks 199
12 Summary and Concluding Remarks 201
Ⅲ SOME THEORY,SOME CASE STUDIES 205
13 Parameterized Complexity Theory 205
13.1 Basic definitions and concepts 206
13.1.1 Parameterized reducibility 207
13.1.2 Parameterized complexity classes 209
13.2 The complexity class W[1] 212
13.3 Concrete parameterized reductions 216
13.3.1 W [1]-hardness proofs 218
13.3.2 Further reductions and W[2]-hardness 226
13.4 Some recent developments 230
13.4.1 Lower bounds and the complexity class M[1] 230
13.4.2 Lower bounds and linear FPT reductions 232
13.4.3 Machine models,limited nondeterminism,and bounded FPT 233
13.5 Summary and concluding remarks 234
13.6 Exercises 235
13.7 Bibliographical remarks 235
14 Connections to Approximation Algorithms 237
14.1 Approximation helping parameterization 238
14.2 Parameterization helping approximation 239
14.3 Further (non-)relations 241
14.4 Discussion and concluding remarks 241
14.5 Bibliographical remarks 242
15 Selected Case Studies 243
15.1 Planar and more general graphs 243
15.1.1 Planar graphs 243
15.1.2 More general graphs 245
15.2 Graph modification problems 245
15.2.1 Graph modification and hereditary properties 246
15.2.2 Feedback Vertex Set revisited 247
15.2.3 Graph Bipartization 248
15.2.4 Minimum Fill-In 249
15.2.5 Closest 3-Leaf Power 250
15.3 Miscellaneous graph problems 251
15.3.1 Capacitated Vertex Cover 251
15.3.2 Constraint Bipartite Vertex Cover 253
15.3.3 Graph Coloring 255
15.3.4 Crossing Number 256
15.3.5 Power Dominating Set 257
15.4 Computational biology problems 258
15.4.1 Minimum Quartet Inconsistency 259
15.4.2 Compatibility of Unrooted Phylogenetic Trees 261
15.4.3 Longest Arc-Preserving Common Subsequences 262
15.4.4 Incomplete Perfect Path Phylogeny Haplotyp-ing 264
15.5 Logic and related problems 266
15.5.1 Satisfiability 266
15.5.2 Maximum Satisfiability 268
15.5.3 Constraint satisfaction problems 269
15.5.4 Database queries 270
15.6 Miscellaneous problems 271
15.6.1 Two-dimensional Euclidean TSP 272
15.6.2 Multidimensional matching 273
15.6.3 Matrix Domination 273
15.6.4 Vapnik-Chervonenkis Dimension 274
15.7 Summary and concluding remarks 275
16 Zukunftsmusik 277
References 279
Index 294
- 《WENN DIE LETZTEN STERNE BLEICHEN LIED FUR SINGSTIMME UND KLAVIER》FRANZ LISZT BAYERISCHEN STAATSBIBLIOTHEK MUNCHEN ROLF GRIEBEL SIGRID VON MOISY SABINE KURTH 2007
- 《梦想社会 为产品赋予情感价值》(丹)罗尔夫·詹森(Rolf Jensen)著 2003
- 《Tivoli TME 10网络与系统管理指南》(美)(罗尔夫·伦德曼)Rolf Lendenmann等著;阎小兵等译 1999
- 《只有梦想者才能摘到星星 生活中的100条黄金法则》(德)罗尔夫·托尔茨曼(Rolf Tolzmann)著;王晔译 2003
- 《发现小船 242个德国经典逻辑游戏》(德)罗尔夫·狄特利希(Rolf Dietrich),(德)莱因哈特·缪勒(Reinhard Muller),(德)瓦尔特·温策尔(Walter Wenzel)著;马怀琪译 2005
- 《应用故障诊断学》(德)罗尔夫·艾思曼(Rolf Isermann)著 2017
- 《胶质瘤细胞生物学》Aleksi.Sedo;Rolf.Mentlein 2017
- 《法律与历史 论《德国民法典》的形成与变迁》(德)罗尔夫·克尼佩尔(Rolf Knieper) 朱岩译 2003
- 《莫扎特F大调奏鸣曲 为双簧管与钢琴而作 作品13》(奥)莫扎特(Wolfgang Amadeus Mozart)曲) 罗尔夫·尤利乌斯·科赫(Rolf Julius Koch)改编 2003
- 《理解情感解决问题》(德)多丽斯·沃尔夫(Doris Wolf),(德)罗尔夫·梅尔克勒(Rolf Merkle)著;赖升禄,胡慧琴译 1999
- 《中国“80后”大学教师胜任力评价研究=RESEARCH ON THE EVALUATION OF CHINA'S POST 80s GENERATION UNIVERSITY TEACHERS' CO》黄艳著 2013
- 《解读好莱坞:电影的空间与意义》Deborah Thomas著;李达义,曹玉玲译 2004
- 《会说话的星图 星座篇》徐历涛著 2014
- 《可靠性工程与风险管理 第3辑 英文版》赵衍刚编 2012
- 《竞争战略 全译珍藏版》(美)迈克尔·波特(Michael E. Porter)著 2012
- 《中国材料名师讲坛 第1辑》谢建新主编 2012
- 《翻译能力的培养》舍夫娜,阿达巴编 2012
- 《大学生外语口语焦虑 自我图式的视角 for university students: in the view of self-schema》巫文胜著 2014
- 《都柏林大学的教育内涵与实践 探索世界高水平大学发展之路 explore the development of the world high-level university》李全宏编著 2013
- 《物理学 卷1 力学和热学 医学、生物等专业适用 英文改编版原书第4版》AlanGiambattista,BettyMcCarthyRichardson著 2013