当前位置:首页 > 数理化
分子物理学和量子化学基础  第2版
分子物理学和量子化学基础  第2版

分子物理学和量子化学基础 第2版PDF电子书下载

数理化

  • 电子书积分:17 积分如何计算积分?
  • 作 者:(德)哈科恩著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2014
  • ISBN:7510077821
  • 页数:592 页
图书介绍:
《分子物理学和量子化学基础 第2版》目录

1 Introduction 1

1.1 What Is a Molecule? 1

1.2 Goals and Methods 3

1.3 Historical Remarks 4

1.4 The Significance of Molecular Physics and Quantum Chemistry for Other Fields 7

2 Mechanical Properties of Molecules,Their Size and Mass 9

2.1 Molecular Sizes 9

2.2 The Shapes of Molecules 17

2.3 Molecular Masses 19

2.4 Specific Heat and Kinetic Energy 21

Problems 23

3 Molecules in Electric and Magnetic Fields 27

3.1 Dielectric Properties 27

3.2 Nonpolar Molecules 29

3.3 Polar Molecules 33

3.4 Index of Refraction,Dispersion 36

3.5 The Anisotropy of the Polarisability 39

3.6 Molecules in Magnetic Fields,Basic Concepts and Definitions 40

3.7 Diamagnetic Molecules 42

3.8 Paramagnetic Molecules 44

Problems 46

4 Introduction to the Theory of Chemical Bonding 51

4.1 A Brief Review of Quantum Mechanics 51

4.2 Heteropolar and Homopolar Bonding 56

4.3 The Hydrogen Molecule-Ion,H+ 2 58

4.4 The Hydrogen Molecule,H2 65

4.4.1 The Variational Principle 65

4.4.2 The Heitler-London Method 66

4.4.3 Covalent-Ionic Resonance 75

4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen 76

4.4.5 Comparison of the Wavefunctions 77

4.5 Hybridisation 78

Problems 83

5 Symmetries and Symmetry Operations:A First Overview 89

5.1 Fundamental Concepts 89

5.2 Application to Benzene:the π-Electron Wavefunctions by the Hückel Method 93

5.3 The Hückel Method Revisited,The Energy of the π-Electrons 97

5.4 Slater Determinants 101

5.5 The Ethene Wavefunctions.Parity 102

5.6 Summary 103

Problems 104

6 Symmetries and Symmetry Operations.A Systematic Approach 107

6.1 Fundamentals 107

6.2 Molecular Point Groups 112

6.3 The Effect of Symmetry Operations on Wavefunctions 116

6.4 Similarity Transformations and Reduction of Matrices 119

6.5 Fundamentals of the Theory of Group Representations 122

6.5.1 The Concept of the Class 122

6.5.2 The Character of a Representation 123

6.5.3 The Notation for Irreducible Representations 127

6.5.4 The Reduction of a Representation 128

6.6 Summary 131

6.7 An Example:The H2O Molecule 132

Problems 142

7 The Multi-Electron Problem in Molecular Physics and Quantum Chemistry 147

7.1 Overview and Formulation of the Problem 147

7.1.1 The Hamiltonian and the Schr?dinger Equation 147

7.1.2 Slater Determinants and Energy Expectation Values 148

7.2 The Hartree-Fock Equation.The Self-Consistent Field(SCF)Method 151

7.3 The Hartree-Fock Method for a Closed Shell 151

7.4 The Unrestricted SCF Method for Open Shells 153

7.5 The Restricted SCF Method for Open Shells 154

7.6 Correlation Energies 156

7.7 Koopman's Theorem 156

7.8 Configuration Interactions 157

7.9 The Second Quantisation 159

7.10 Résumé of the Results of Chapters 4-7 161

Problems 162

8 Overview of Molecular Spectroscopy Techniques 165

8.1 Spectral Regions 165

8.2 An Overview of Optical Spectroscopy Methods 166

8.3 Other Experimental Methods 169

Problems 170

9 Rotational Spectroscopy 171

9.1 Microwave Spectroscopy 171

9.2 Diatomic Molecules 172

9.2.1 The Spectrum of the Rigid Rotor (Dumbbell Model) 172

9.2.2 Intensities 178

9.2.3 The Non-rigid Rotor 179

9.3 Isotope Effects 182

9.4 The Stark Effect 184

9.5 Polyatomic Molecules 186

9.6 Some Applications of Rotational Spectroscopy 190

Problems 190

10 Vibrational Spectroscopy 193

10.1 Infrared Spectroscopy 193

10.2 Diatomic Molecules:Harmonic Approximation 194

10.3 Diatomic Molecules.The Anharmonic Oscillator 198

10.4 Rotational-Vibrational Spectra of Diatomic Molecules.The Rotating Oscillator and the Rotational Structure of the Bands 205

10.5 The Vibrational Spectra of Polyatomic Molecules 212

10.6 Applications of Vibrational Spectroscopy 218

10.7 Infrared Lasers 219

10.8 Microwave Masers 220

Problems 222

11 The Quantum-Mechanical Treatment of Rotational and Vibrational Spectra 225

11.1 The Diatomic Molecule 225

11.1.1 The Born-Oppenheimer Approximation 225

11.1.2 Justification of the Approximations 232

11.2 The Rotation of Tri-and Polyatomic Molecules 234

11.2.1 The Expression for the Rotational Energy 234

11.2.2 The Symmetric Top 237

11.2.3 The Asymmetric Top 238

11.3 The Vibrations of Tri-and Polyatomic Molecules 242

11.4 Symmetry and Normal Coordinates 249

11.5 Summary 255

Problems 256

12 Raman Spectra 257

12.1 The Raman Effect 257

12.2 Vibrational Raman Spectra 258

12.3 Rotational Raman Spectra 262

12.4 The Influence of Nuclear Spins on the Rotational Structure 267

Problems 271

13 Electronic States 275

13.1 The Structure of Band Spectra 275

13.2 Types of Bonding 276

13.3 Electronic States of Diatomie Molecules 276

13.4 Many-Electron States and Total Electronic States of Diatomic Molecules 284

13.5 An Example:the Electronic States of H2 293

Problems 294

14 The Electronic Spectra of Molecules 295

14.1 Vibrational Structure of the Band Systems of Small Molecules;The Franck-Condon Principle 295

14.2 The Rotational Structure of Electronic Band Spectra in Small Molecules;Overview and Selection Rules 303

14.3 The Rotational Structure of the Band Spectra of Small Molecules;Fortrat Diagrams 305

14.4 Dissociation and Predissociation 310

14.5 Applications of Band Spectra of Smaller Molecules 314

14.6 The Electronic Spectra of Larger Molecules 316

Problems 324

15 Further Remarks on the Techniques of Molecular Spectroscopy 327

15.1 The Absorption of Light 327

15.2 Radiationless Processes 330

15.3 The Emission of Light 331

15.4 Cold Molecules 333

15.5 Dye Lasers 338

15.6 High-Resolution Two-Photon Spectroscopy 339

15.7 Ultrashort Pulse Spectroscopy 342

15.8 Photoelectron Spectroscopy 343

15.9 High-Resolution Photoelectron Spectroscopy 348

Problems 349

16 The Interaction of Molecules with Light:Quantum-Mechanical Thatment 353

16.1 An Overview 353

16.2 Time-Dependent Perturbation Theory 354

16.3 Spontaneous and Stimulated Emission and the Absorption of Light by Molecules 360

16.3.1 The Form of the Hamiltonian 360

16.3.2 Wavefunctions of the Initial and Final States 363

16.3.3 The General Form of the Matrix Elements 363

16.3.4 Transition Probabilities and the Einstein Coefficients 366

16.3.5 The Calculation of the Absorption Coefficient 373

16.3.6 Transition Moments,Oscillator Strengths,and Spatial Averaging 374

16.4 The Franck-Condon Principle 378

16.5 Selection Rules 381

16.6 Summary 385

17 Theoretical Tratment of the Raman Effect and the Elements of Nonlinear Optics 387

17.1 Time-Dependent Perturbation Theory in Higher Orders 387

17.2 Theoretical Description of the Raman Effect 390

17.3 Two-Photon Absorption 400

18 Nuclear Magnetic Resonance 403

18.1 Fundamentals of Nuclear Resonance 403

18.1.1 Nuclear Spins in a Magnetic Field 403

18.1.2 Detection of Nuclear Resonance 406

18.2 Proton Resonance in Molecules 407

18.2.1 The Chemical Shift 407

18.2.2 Fine Structure and the Direct Nuclear Spin-Spin Coupling 412

18.2.3 Fine Structure and the Indirect Spin-Spin Coupling Between Two Nuclei 413

18.2.4 The Indirect Spin-Spin Interaction Among Several Nuclei 415

18.3 Dynamic Processes and Relaxation Times 418

18.4 Nuclear Resonance with Other Nuclei 422

18.5 Two-Dimensional Nuclear Resonance 423

18.5.1 The Basic Concepts 423

18.5.2 The Quantum-mechanical Theory of COSY 426

18.5.3 The Investigation of Dynamic Processes Using 2-Dimensional Exchange Spectroscopy,in particular NOESY 431

18.6 Applications of Nuclear Magnetic Resonance 435

Problems 435

19 Electron Spin Resonance 441

19.1 Fundamentals 441

19.2 The g-Factor 443

19.3 Hyperfine Structure 443

19.4 Fine Structure 451

19.5 Calculation of the Fine Structure Tensor and the Spin Wavefunctions of Triplet States 453

19.6 Double Resonance Methods:ENDOR 461

19.7 Optically Detected Magnetic Resonance(ODMR) 463

19.8 Applications of ESR 468

Problems 469

20 Macromolecules,Biomolecules,and Supermolecules 473

20.1 Their Significance for Physics,Chemistry,and Biology 473

20.2 Polymers 475

20.3 Molecular Recognition,Molecular Inclusion 479

20.4 Energy Transfer,Sensitisation 482

20.5 Molecules for Photoreactions in Biology 486

20.6 Molecules as the Basic Units of Life 490

20.7 Molecular Functional Units 494

Problems 500

21 Experiments on and with Single Molecules 503

21.1 Introduction:Why? 503

21.2 The Imaging of Single Molecules with X-ray and Electron Beam Methods 504

21.3 Scanning Tunnel and Atomic Force Microscopes 505

21.4 Optical Spectroscopy of Single Molecules 508

21.4.1 Overview 508

21.4.2 Experimental Methods 510

21.4.3 Single-Molecule Spectroscopy with Relatively Limited Resolution:Spatial Selection 511

21.4.4 Measurements with a High Spectral Resolution at Low Temperatures:Spectral Selection 512

21.4.5 Some Experimental Results 516

21.5 The Electrical Conductivity ofMolecules 520

21.5.1 Molecular Wires 520

21.5.2 Experimental Results 523

22 Molecular Electronics and Other Applications 527

22.1 What Is It? 527

22.2 Molecules as Switching Elements 528

22.3 Molecular Electrical Conductors 533

22.4 Molecular Wires 538

22.5 Molecules as Energy Conductors 542

22.6 Molecular Electronic Functional Units 548

22.7 Nanotubes 552

22.8 Molecular Storage Elements,Hole-Burning 554

22.9 Electroluminescence and Light-Emitting Diodes 557

22.10 The Future:Intelligent Molecular Materials 558

Problems 558

Appendix 561

A.1 The Calculation of Expectation Values Using Wavefunctions Represented by Determinants 561

A.1.1 Calculation of Determinants 561

A.1.2 Calculation of Expectation Values 562

A.2 Calculation of the Density of Radiation 566

Bibliography 569

Subject Index 577

返回顶部