经典和现代回归分析及其应用 第2版PDF电子书下载
- 电子书积分:15 积分如何计算积分?
- 作 者:(美)麦尔斯(Myers,R.H.)著
- 出 版 社:北京:高等教育出版社
- 出版年份:2005
- ISBN:7040163233
- 页数:489 页
CHAPTER 1 INTRODUCTION:REGRESSION ANALYSIS 1
1.1 Regression models 3
1.2 Formal uses of regression analysis 5
1.3 The data base 6
References 7
CHAPTER 2 THE SIMPLE LINEAR REGRESSION MODEL 8
2.1 The model description 8
2.2 Assumptions and interpretation of model parameters 9
2.3 Least squares formulation 12
2.4 Maximum likelihood estimation 20
2.5 Partioning total variability 22
2.6 Tests of hypothesis on slope and intercept 26
2.7 Simple regression through the origin(Fixed intercept) 33
2.8 Quality of fitted model 37
2.9 Confidence intervals on mean response and prediction intervals 41
2.10 Simultaneous inference in simple linear regression 47
2.11 A complete annotated computer printout 56
2.12 A look at residuals 57
2.13 Both x and y random 66
Exercises 72
References 80
CHAPTER 3 THE MULTIPLE LINEAR REGRESSION MODEL 82
3.1 Model description and assumptions 82
3.2 The general linear model and the least squares procedure 85
3.3 Properties of least squares estimators under ideal conditions 91
3.4 Hypothesis testing in multiple linear regression 95
3.5 Confidence intervals and prediction intervals in multiple regressions 112
3.6 Data with repeated observations 116
3.7 Simultaneous inference in multiple regression 120
3.8 Multicollinearity in multiple regression data 123
3.9 Quality fit,quality prediction,and the HAT matrix 133
3.10 Categorical or indicator variables(Regression models and ANOVA models) 135
Exercises 153
References 163
CHAPTER 4 CRITERIA FOR CHOICE OF BEST MODEL 164
4.1 Standard criteria for comparing models 165
4.2 Cross validation for model selection and determination of model performance 167
4.3 Conceptual predictive criteria(The Cp=statistic) 178
4.4 Sequential variable selection procedures 185
4.5 Further comments and all possible regressions 193
Exercises 199
References 206
CHAPTER 5 ANALYSIS OF RESIDUALS 209
5.1 Information retrieved from residuals 210
5.2 Plotting of residuals 211
5.3 Studentized residuals 217
5.4 Relation to standardized PRESS residuals 220
5.5 Detection of outliers 221
5.6 Diagnostic plots 231
5.7 Normal residual plots 242
5.8 Further comments on analysis of residuals 244
Exercises 244
References 248
CHAPTER 6 INFLUENCE DIAGNOSTICS 249
6.1 Sources of influence 250
6.2 Diagnostics:Residuals and the HAT matrix 251
6.3 Diagnostics that determine extent of influence 257
6.4 Influence on performance 267
6.5 What do we do with high influence points? 270
Exercises 272
References 273
CHAPTER 7 NONSTANDARD CONDITIONS,VIOLATIONS OF ASSUMPTIONS,AND TRANSFORMATIONS 275
7.1 Heterogeneous variance:Weighted least squares 277
7.2 Problem with correlated errors(Autocorrelation) 287
7.3 Transformations to improve fit and prediction 293
7.4 Regression with a binary response 315
7.5 Further developments in models with a discrete response(Poisson regression) 332
7.6 Generalized linear models 339
7.7 Failure of normality assumption:Presence of outliers 348
7.8 Measurement errors in the regressor variables 357
Exercises 358
References 365
CHAPTER 8 DETECTING AND COMBATING MULTICOLLINEARITY 368
8.1 Multicollinearitv diagnostics 369
8.2 Variance proportions 371
8.3 Further topics concerning multicollinearity 379
8.4 Alternatives to least squares in cases of multicollinea ritv 389
Exercises 419
References 422
CHAPTER 9 NONLINEAR REGRESSION 424
9.1 Nonlinear least squares 425
9.2 Properties of the least squares estimators 425
9.3 The Gauss-Newton procedure for finding estimates 426
9.4 Other modifications of the Gauss-Newton procedure 433
9.5 Some special classes of nonlinear models 436
9.6 Further considerations in nonlinear regression 440
9.7 Why not transform data to 1inearize? 444
Exercises 445
References 449
APPENDIX A SOME SPECIAL CONCEPTS IN MATRIXALGEBRA 452
A.1 Solutions to simultaneous linear equations 452
A.2 Quadratic form 454
A.3 Eigenvalues and eigenvectors 456
A.4 The inverses of a partitioned matrix 458
A.5 Sherman-Morrison-Woodbury theorem 459
References 460
APPENDIX B SOME SPECIAL MANIPULATIONS 461
B.1 Unbiasedness of the residual mean square 461
B.2 Expected value of residual sum of squares and mean square for an underspecified model 462
B.3 The maximum likelihood estimator 464
B.4 Development of the PRESS statistic 465
B.5 Computation of s-i 467
B.6 Dominance of a residual by the corresponding model error 468
B.7 Computation of influence diagnostics 468
B.8 Maximum likelihood estimator in the nonlinear model 470
B.9 Taylor series 470
B.10 Development of the C?-statistic 471
References 473
APPENDIX C STATISTICAL TABLES 474
INDEX 486
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《国学经典诵读》(中国)严琼燕 2019
- 《钒产业技术及应用》高峰,彭清静,华骏主编 2019
- 《现代水泥技术发展与应用论文集》天津水泥工业设计研究院有限公司编 2019
- 《优势谈判 15周年经典版》(美)罗杰·道森 2018
- 《分析化学》陈怀侠主编 2019
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《日本面包师的经典配方》马妍责任编辑;王森 2019
- 《数据库技术与应用 Access 2010 微课版 第2版》刘卫国主编 2020
- 《清至民国中国西北戏剧经典唱段汇辑 第8卷》孔令纪 2018
- 《全国高等中医药行业“十三五”创新教材 中医药学概论》翟华强 2019
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《习近平总书记教育重要论述讲义》本书编写组 2020
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《教育学考研应试宝典》徐影主编 2019
- 《语文教育教学实践探索》陈德收 2018
- 《家庭音乐素养教育》刘畅 2018