当前位置:首页 > 数理化
椭圆方程有限元方法的整体超收敛及其应用  英文版
椭圆方程有限元方法的整体超收敛及其应用  英文版

椭圆方程有限元方法的整体超收敛及其应用 英文版PDF电子书下载

数理化

  • 电子书积分:12 积分如何计算积分?
  • 作 者:李子才,黄宏财,严宁宁著
  • 出 版 社:北京:科学出版社
  • 出版年份:2011
  • ISBN:9787030334794
  • 页数:324 页
图书介绍:本书总结了作者及合作者近十几年来在有限元高精度算法(主要是整体超收敛分析)方面的主要结果,其中包括许多已发表或尚未发表的成果。本书采用统一的分析方法,即中国学者独创的积分恒等式方法,对常见的椭圆型偏微分方程的各种有限元方法进行了深入、系统的分析,给出了相应的整体超收敛结果及高精度有限元算法。该书还讨论了非线性问题、特征值问题及差分方法等的整体超收敛,研究了相应的稳定性分析和奇异问题的特殊处理技术,介绍了大量实际应用问题的超收敛分析和数值计算结果,以验证整体超收敛分析的有效性。
《椭圆方程有限元方法的整体超收敛及其应用 英文版》目录

Chapter 1 Basic Approaches 1

1.1 Introduction 1

1.2 Simplified Hybrid Combined Methods 3

1.3 Basic Theorem for Global Superconvergence 6

1.4 Bilinear Elements 8

1.5 Numerical Experiments 12

1.6 Concluding Remarks 15

Chapter 2 Adini's Elements 17

2.1 Introduction 17

2.2 Adini's Elements 19

2.3 Global Superconvergence 22

2.3.1 New error estimates 22

2.3.2 A posteriori interpolant formulas 25

2.4 Proof of Theorem 2.3.1 32

2.4.1 Preliminary lemmas 32

2.4.2 Main proof of Theorem 2.3.1 39

2.5 Stability Analysis 40

2.6 New Stability Analysis via Effective Condition Number 41

2.6.1 Computational formulas 42

2.6.2 Bounds of effective condition number 44

2.7 Numerical Experiments and Concluding Remarks 48

Chapter 3 Biquadratic Lagrange Elements 55

3.1 Introduction 56

3.2 Biquadratic Lagrange Elements 57

3.3 Global Superconvergence 59

3.3.1 New error estimates 59

3.3.2 Proof of Theorem 3.3.1 67

3.3.3 Proof of Theorem 3.3.2 73

3.3.4 Error bounds for Q8 elements 73

3.4 Numerical Experiments and Discussions 74

3.4.1 Global superconvergence 75

3.4.2 Special case of h=k and fxxyy=0 77

3.4.3 Comparisons 78

3.4.4 Relation between uh and ? 80

3.5 Concluding Remarks 83

Chapter 4 Simplified Hybrid Method for Motz's Problems 85

4.1 Introduction 85

4.2 Simplified Hybrid Combined Methods 86

4.3 Lagrange Rectangular Elements 89

4.4 Adini's Elements 96

4.5 Concluding Remarks 99

Chapter 5 Finite Difference Methods for Singularity Problems 101

5.1 Introduction 101

5.2 The Shortley-Weller Difference Approximation 102

5.3 Analysis for uD h with no Error of Divergence Integration 106

5.4 Analysis for uh with Approximation of Divergence Integration 112

5.5 Numerical Verification on Reduced Convergence Rates 120

5.5.1 The model on stripe domains 120

5.5.2 The Richardson extrapolation and the least squares method 124

5.6 Concluding Remarks 128

Chapter 6 Basic Error Estimates for Biharmonic Equations 130

6.1 Introduction 130

6.2 Basic Estimates for ∫∫Ω(u-uI)xxvxxds 136

6.3 Basic Estimates for ∫∫Ω(u-uI)xyvxyds 141

6.4 New Estimates for ∫∫Ω(u-uI)xyvxyds for Uniform Rectangular Elements 147

6.5 New Estimates for ∫∫Ω(u-uI)xxvyyds 152

6.6 Main Theorem of Global Superconvergence 157

6.7 Concluding Remarks 158

Chapter 7 Stability Analysis and Superconvergence of Blending Problems 160

7.1 Introduction 160

7.2 Description of Numerical Methods 162

7.3 Stability Analysis 167

7.3.1 Optimal convergence rates and the uniform VO h-elliptic inequality 167

7.3.2 Bounds of condition number 170

7.3.3 Proof for Theorem 7.3.4 174

7.4 Global Superconvergence 179

7.5 Numerical Experiments and Other Kinds of Superconvergence 184

7.5.1 Verification of the analysis in Section 7.3 and Section 7.4 184

7.5.2 New superconvergence of average nodal solutions 188

7.5.3 Superconvergence of L∞-norm 189

7.5.4 Global superconvergence of the a posteriori interpolant solutions 190

7.6 Concluding Remarks 190

Chapter 8 Blending Problems in 3D with Periodical Boundary Conditions 192

8.1 Introduction 192

8.2 Biharmonic Equations 194

8.2.1 Description of numerical methods 194

8.2.2 Global superconvergence 197

8.3 The BPH-FEM for Blending Surfaces 201

8.4 Optimal Convergence and Numerical Stability 206

8.5 Superconvergence 207

Chapter 9 Lower Bounds of Leading Eigenvalues 212

9.1 Introduction 212

9.1.1 Bilinear element Q1 213

9.1.2 Rotated Q1 element(Qrot 1) 213

9.1.3 Extension of rotated Q1 element(EQrot 1) 214

9.1.4 Wilson's element 214

9.2 Basic Theorems 216

9.3 Bilinear Elements 219

9.4 Qrot 1 and EQrot 1 Elements 221

9.4.1 Proof of Lemma 9.4.1 225

9.4.2 Proof of Lemma 9.4.2 226

9.4.3 Proof of Lemma 9.4.3 227

9.4.4 Proof of Lemma 9.4.4 230

9.5 Wilson's Element 232

9.5.1 Proof of Lemma 9.5.1 234

9.5.2 Proof of Lemma 9.5.2 237

9.5.3 Proof of Lemma 9.5.3 and Lemma 9.5.4 238

9.6 Expansions for Eigenfunctions 239

9.7 Numerical Experiments 241

9.7.1 Function ρ=1 242

9.7.2 Function ρ≠0 248

9.7.3 Numerical conclusions 251

Chapter 10 Eigenvalue Problems with Periodical Boundary Conditions 253

10.1 Introduction 253

10.2 Periodic Boundary Conditions 256

10 3 Adini's Elements for Eigenvalue Problems 258

10 4 Error Analysis for Poisson's Equation 260

10.5 Superconvergence for Eigenvalue Problems 263

10.6 Applications to Other Kinds of FEMs 265

10.6.1 Bi-quadratic Lagrange elements 265

10.6.2 Triangular elements 266

10.7 Numerical Results 267

10.8 Concluding Remarks 273

Chapter 11 Semilinear Problems 274

11.1 Introduction 274

11.2 Parameter-Dependent Semilinear Problems 276

11.3 Basic Theorems for Superconvergence of FEMs 279

11.4 Superconvergence of Bi-p(≥2)-Lagrange Elements 286

11.5 A Continuation Algorithm Using Adini's Elements 294

11.6 Conclusions 296

Chapter 12 Epilogue 297

12.1 Basic Framework of Global Superconvergence 297

12.2 Some Results on Integral Identity Analysis 300

12.3 Some Results on Global Superconvergence 302

Bibliography 306

Index 320

返回顶部