TensorFlow机器学习实战指南PDF电子书下载
- 电子书积分:8 积分如何计算积分?
- 作 者:(美)尼克·麦克卢尔著;曾益强译者
- 出 版 社:北京:机械工业出版社
- 出版年份:2017
- ISBN:9787111579489
- 页数:105 页
第1章 TensorFlow基础 1
1.1 TensorFlow介绍 1
1.2 TensorFlow如何工作 1
1.2.1 开始 1
1.2.2 动手做 2
1.2.3 工作原理 3
1.2.4 参考 3
1.3 声明张量 3
1.3.1 开始 4
1.3.2 动手做 4
1.3.3 工作原理 5
1.3.4 延伸学习 5
1.4 使用占位符和变量 6
1.4.1 开始 6
1.4.2 动手做 6
1.4.3 工作原理 6
1.4.4 延伸学习 7
1.5 操作(计算)矩阵 7
1.5.1 开始 7
1.5.2 动手做 9
1.5.3 工作原理 9
1.6 声明操作 10
1.6.1 开始 10
1.6.2 动手做 10
1.6.3 工作原理 11
1.6.4 延伸学习 12
1.7 实现激励函数 12
1.7.1 开始 12
1.7.2 动手做 12
1.7.3 工作原理 13
1.7.4 延伸学习 13
1.8 读取数据源 14
1.8.1 开始 15
1.8.2 动手做 15
1.8.3 参考 18
1.9 学习资料 19
第2章 TensorFlow进阶 20
2.1 本章概要 20
2.2 计算图中的操作 20
2.2.1 开始 20
2.2.2 动手做 21
2.2.3 工作原理 21
2.3 TensorFlow的嵌入Layer 21
2.3.1 开始 21
2.3.2 动手做 22
2.3.3 工作原理 22
2.3.4 延伸学习 22
2.4 TensorFlow的多层Layer 23
2.4.1 开始 23
2.4.2 动手做 24
2.4.3 工作原理 25
2.5 TensorFlow实现损失函数 26
2.5.1 开始 26
2.5.2 动手做 26
2.5.3 工作原理 28
2.5.4 延伸学习 29
2.6 TensorFlow实现反向传播 30
2.6.1 开始 30
2.6.2 动手做 31
2.6.3 工作原理 33
2.6.4 延伸学习 34
2.6.5 参考 34
2.7 TensorFlow实现随机训练和批量训练 34
2.7.1 开始 35
2.7.2 动手做 35
2.7.3 工作原理 36
2.7.4 延伸学习 37
2.8 TensorFlow实现创建分类器 37
2.8.1 开始 37
2.8.2 动手做 37
2.8.3 工作原理 39
2.8.4 延伸学习 40
2.8.5 参考 40
2.9 TensorFlow实现模型评估 40
2.9.1 开始 40
2.9.2 动手做 41
2.9.3 工作原理 41
第3章 基于TensorFlow的线性回归 45
3.1 线性回归介绍 45
3.2 用TensorFlow求逆矩阵 45
3.2.1 开始 45
3.2.2 动手做 46
3.2.3 工作原理 47
3.3 用TensorFlow实现矩阵分解 47
3.3.1 开始 47
3.3.2 动手做 47
3.3.3 工作原理 48
3.4 用TensorFlow实现线性回归算法 49
3.4.1 开始 49
3.4.2 动手做 49
3.4.3 工作原理 52
3.5 理解线性回归中的损失函数 52
3.5.1 开始 52
3.5.2 动手做 52
3.5.3 工作原理 53
3.5.4 延伸学习 54
3.6 用TensorFlow实现戴明回归算法 55
3.6.1 开始 55
3.6.2 动手做 56
3.6.3 工作原理 57
3.7 用TensorFlow实现lasso回归和岭回归算法 58
3.7.1 开始 58
3.7.2 动手做 58
3.7.3 工作原理 59
3.7.4 延伸学习 59
3.8 用TensorFlow实现弹性网络回归算法 60
3.8.1 开始 60
3.8.2 动手做 60
3.8.3 工作原理 61
3.9 用TensorFlow实现逻辑回归算法 62
3.9.1 开始 62
3.9.2 动手做 62
3.9.3 工作原理 65
第4章 基于TensorFlow的支持向量机 66
4.1 支持向量机简介 66
4.2 线性支持向量机的使用 67
4.2.1 开始 67
4.2.2 动手做 68
4.2.3 工作原理 72
4.3 弱化为线性回归 72
4.3.1 开始 73
4.3.2 动手做 73
4.3.3 工作原理 76
4.4 TensorFlow上核函数的使用 77
4.4.1 开始 77
4.4.2 动手做 77
4.4.3 工作原理 81
4.4.4 延伸学习 82
4.5 用TensorFlow实现非线性支持向量机 82
4.5.1 开始 82
4.5.2 动手做 82
4.5.3 工作原理 84
4.6 用TensorFlow实现多类支持向量机 85
4.6.1 开始 85
4.6.2 动手做 86
4.6.3 工作原理 89
第5章 最近邻域法 90
5.1 最近邻域法介绍 90
5.2 最近邻域法的使用 91
5.2.1 开始 91
5.2.2 动手做 91
5.2.3 工作原理 94
5.2.4 延伸学习 94
5.3 如何度量文本距离 95
5.3.1 开始 95
5.3.2 动手做 95
5.3.3 工作原理 98
5.3.4 延伸学习 98
5.4 用TensorFlow实现混合距离计算 98
5.4.1 开始 98
5.4.2 动手做 98
5.4.3 工作原理 101
5.4.4 延伸学习 101
5.5 用TensorFlow实现地址匹配 101
5.5.1 开始 101
5.5.2 动手做 102
5.5.3 工作原理 104
5.6 用TensorFlow实现图像识别 105
5.6.1 开始 105
5.6.2 动手做 105
5.6.3 工作原理 108
5.6.4 延伸学习 108
第6章 神经网络算法 109
6.1 神经网络算法基础 109
6.2 用TensorFlow实现门函数 110
6.2.1 开始 110
6.2.2 动手做 111
6.2.3 工作原理 113
6.3 使用门函数和激励函数 113
6.3.1 开始 114
6.3.2 动手做 114
6.3.3 工作原理 116
6.3.4 延伸学习 117
6.4 用TensorFlow实现单层神经网络 117
6.4.1 开始 117
6.4.2 动手做 117
6.4.3 工作原理 119
6.4.4 延伸学习 119
6.5 用TensorFlow实现神经网络常见层 120
6.5.1 开始 120
6.5.2 动手做 121
6.5.3 工作原理 126
6.6 用TensorFlow实现多层神经网络 126
6.6.1 开始 126
6.6.2 动手做 126
6.6.3 工作原理 131
6.7 线性预测模型的优化 131
6.7.1 开始 131
6.7.2 动手做 131
6.7.3 工作原理 135
6.8 用TensorFlow基于神经网络实现井字棋 136
6.8.1 开始 136
6.8.2 动手做 137
6.8.3 工作原理 142
第7章 自然语言处理 143
7.1 文本处理介绍 143
7.2 词袋的使用 144
7.2.1 开始 144
7.2.2 动手做 144
7.2.3 工作原理 149
7.2.4 延伸学习 149
7.3 用TensorFlow实现TF-IDF算法 149
7.3.1 开始 150
7.3.2 动手做 150
7.3.3 工作原理 154
7.3.4 延伸学习 154
7.4 用TensorFlow实现skip-gram模型 155
7.4.1 开始 155
7.4.2 动手做 155
7.4.3 工作原理 162
7.4.4 延伸学习 162
7.5 用TensorFlow实现CBOW词嵌入模型 162
7.5.1 开始 162
7.5.2 动手做 163
7.5.3 工作原理 167
7.5.4 延伸学习 167
7.6 使用TensorFlow的Word2 Vec预测 167
7.6.1 开始 167
7.6.2 动手做 168
7.6.3 工作原理 172
7.6.4 延伸学习 172
7.7 用TensorFlow实现基于Doc2Vec的情感分析 172
7.7.1 开始 172
7.7.2 动手做 173
7.7.3 工作原理 180
第8章 卷积神经网络 181
8.1 卷积神经网络介绍 181
8.2 用TensorFlow实现简单的CNN 182
8.2.1 开始 182
8.2.2 动手做 182
8.2.3 工作原理 187
8.2.4 延伸学习 188
8.2.5 参考 188
8.3 用TensorFlow实现进阶的CNN 188
8.3.1 开始 188
8.3.2 动手做 189
8.3.3 工作原理 196
8.3.4 参考 196
8.4 再训练已有的CNN模型 196
8.4.1 开始 196
8.4.2 动手做 196
8.4.3 工作原理 199
8.4.4 参考 199
8.5 用TensorFlow实现模仿大师绘画 199
8.5.1 开始 200
8.5.2 动手做 200
8.5.3 工作原理 205
8.5.4 参考 205
8.6 用TensorFlow实现DeepDream 205
8.6.1 开始 205
8.6.2 动手做 205
8.6.3 延伸学习 210
8.6.4 参考 210
第9章 递归神经网络 211
9.1 递归神经网络介绍 211
9.2 用TensorFlow实现RNN模型进行垃圾短信预测 212
9.2.1 开始 212
9.2.2 动手做 213
9.2.3 工作原理 217
9.2.4 延伸学习 218
9.3 用TensorFlow实现LSTM模型 218
9.3.1 开始 218
9.3.2 动手做 219
9.3.3 工作原理 226
9.3.4 延伸学习 226
9.4 Stacking多个LSTM Layer 226
9.4.1 开始 226
9.4.2 动手做 227
9.4.3 工作原理 228
9.5 用TensorFlow实现Seq2Seq翻译模型 229
9.5.1 开始 229
9.5.2 动手做 229
9.5.3 工作原理 234
9.5.4 延伸学习 234
9.6 TensorFlow实现孪生RNN预测相似度 235
9.6.1 开始 235
9.6.2 动手做 236
9.6.3 延伸学习 242
第10章 TensorFlow产品化 243
10.1 简介 243
10.2 TensorFlow的单元测试 243
10.2.1 开始 243
10.2.2 工作原理 247
10.3 TensorFlow的并发执行 247
10.3.1 开始 248
10.3.2 动手做 248
10.3.3 工作原理 250
10.3.4 延伸学习 250
10.4 分布式TensorFlow实践 250
10.4.1 开始 250
10.4.2 动手做 250
10.4.3 工作原理 251
10.5 TensorFlow产品化开发提示 252
10.5.1 开始 252
10.5.2 动手做 252
10.5.3 工作原理 254
10.6 TensorFlow产品化的实例 254
10.6.1 开始 254
10.6.2 动手做 254
10.6.3 工作原理 256
第11章 TensorFlow的进阶应用 257
11.1 简介 257
11.2 TensorFlow可视化:Tensorboard 257
11.2.1 开始 257
11.2.2 动手做 258
11.3 Tensorboard的进阶 260
11.4 用TensorFlow实现遗传算法 262
11.4.1 开始 262
11.4.2 动手做 263
11.4.3 工作原理 265
11.4.4 延伸学习 266
11.5 TensorFlow实现k-means算法 266
11.5.1 开始 266
11.5.2 动手做 266
11.5.3 延伸学习 270
11.6 用TensorFlow求解常微分方程问题 270
11.6.1 开始 270
11.6.2 动手做 270
11.6.3 工作原理 271
11.6.4 参考 272
- 《近代旅游指南汇刊二编 16》王强主编 2017
- 《甘肃省档案馆指南》甘肃省档案馆编 2018
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《Maya 2018完全实战技术手册》来阳编著 2019
- 《近代旅游指南汇刊 31》王强主编 2014
- 《Python3从入门到实战》董洪伟 2019
- 《近代旅游指南汇刊二编 10》王强主编 2017
- 《手工咖啡 咖啡爱好者的完美冲煮指南》(美国)杰茜卡·伊斯托,安德烈亚斯·威尔霍夫 2019
- 《近代旅游指南汇刊 13》王强主编 2014
- 《近代旅游指南汇刊 28》王强主编 2014
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《高等教育双机械基础课程系列教材 高等学校教材 机械设计课程设计手册 第5版》吴宗泽,罗圣国,高志,李威 2018
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019
- 《中国十大出版家》王震,贺越明著 1991
- 《近代民营出版机构的英语函授教育 以“商务、中华、开明”函授学校为个案 1915年-1946年版》丁伟 2017
- 《新工业时代 世界级工业家张毓强和他的“新石头记”》秦朔 2019
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019