当前位置:首页 > 工业技术
TensorFlow机器学习实战指南
TensorFlow机器学习实战指南

TensorFlow机器学习实战指南PDF电子书下载

工业技术

  • 电子书积分:8 积分如何计算积分?
  • 作 者:(美)尼克·麦克卢尔著;曾益强译者
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2017
  • ISBN:9787111579489
  • 页数:105 页
图书介绍:TensorFlow是一个开源机器学习库。本书从TensorFlow的基础开始介绍,涉及变量、矩阵和各种数据源。之后,针对使用TensorFlow线性回归技术的实践经验进行详细讲解。后续章节将在前文的基础上讲述神经网络、CNN、RNN和NLP等重要概念。
《TensorFlow机器学习实战指南》目录

第1章 TensorFlow基础 1

1.1 TensorFlow介绍 1

1.2 TensorFlow如何工作 1

1.2.1 开始 1

1.2.2 动手做 2

1.2.3 工作原理 3

1.2.4 参考 3

1.3 声明张量 3

1.3.1 开始 4

1.3.2 动手做 4

1.3.3 工作原理 5

1.3.4 延伸学习 5

1.4 使用占位符和变量 6

1.4.1 开始 6

1.4.2 动手做 6

1.4.3 工作原理 6

1.4.4 延伸学习 7

1.5 操作(计算)矩阵 7

1.5.1 开始 7

1.5.2 动手做 9

1.5.3 工作原理 9

1.6 声明操作 10

1.6.1 开始 10

1.6.2 动手做 10

1.6.3 工作原理 11

1.6.4 延伸学习 12

1.7 实现激励函数 12

1.7.1 开始 12

1.7.2 动手做 12

1.7.3 工作原理 13

1.7.4 延伸学习 13

1.8 读取数据源 14

1.8.1 开始 15

1.8.2 动手做 15

1.8.3 参考 18

1.9 学习资料 19

第2章 TensorFlow进阶 20

2.1 本章概要 20

2.2 计算图中的操作 20

2.2.1 开始 20

2.2.2 动手做 21

2.2.3 工作原理 21

2.3 TensorFlow的嵌入Layer 21

2.3.1 开始 21

2.3.2 动手做 22

2.3.3 工作原理 22

2.3.4 延伸学习 22

2.4 TensorFlow的多层Layer 23

2.4.1 开始 23

2.4.2 动手做 24

2.4.3 工作原理 25

2.5 TensorFlow实现损失函数 26

2.5.1 开始 26

2.5.2 动手做 26

2.5.3 工作原理 28

2.5.4 延伸学习 29

2.6 TensorFlow实现反向传播 30

2.6.1 开始 30

2.6.2 动手做 31

2.6.3 工作原理 33

2.6.4 延伸学习 34

2.6.5 参考 34

2.7 TensorFlow实现随机训练和批量训练 34

2.7.1 开始 35

2.7.2 动手做 35

2.7.3 工作原理 36

2.7.4 延伸学习 37

2.8 TensorFlow实现创建分类器 37

2.8.1 开始 37

2.8.2 动手做 37

2.8.3 工作原理 39

2.8.4 延伸学习 40

2.8.5 参考 40

2.9 TensorFlow实现模型评估 40

2.9.1 开始 40

2.9.2 动手做 41

2.9.3 工作原理 41

第3章 基于TensorFlow的线性回归 45

3.1 线性回归介绍 45

3.2 用TensorFlow求逆矩阵 45

3.2.1 开始 45

3.2.2 动手做 46

3.2.3 工作原理 47

3.3 用TensorFlow实现矩阵分解 47

3.3.1 开始 47

3.3.2 动手做 47

3.3.3 工作原理 48

3.4 用TensorFlow实现线性回归算法 49

3.4.1 开始 49

3.4.2 动手做 49

3.4.3 工作原理 52

3.5 理解线性回归中的损失函数 52

3.5.1 开始 52

3.5.2 动手做 52

3.5.3 工作原理 53

3.5.4 延伸学习 54

3.6 用TensorFlow实现戴明回归算法 55

3.6.1 开始 55

3.6.2 动手做 56

3.6.3 工作原理 57

3.7 用TensorFlow实现lasso回归和岭回归算法 58

3.7.1 开始 58

3.7.2 动手做 58

3.7.3 工作原理 59

3.7.4 延伸学习 59

3.8 用TensorFlow实现弹性网络回归算法 60

3.8.1 开始 60

3.8.2 动手做 60

3.8.3 工作原理 61

3.9 用TensorFlow实现逻辑回归算法 62

3.9.1 开始 62

3.9.2 动手做 62

3.9.3 工作原理 65

第4章 基于TensorFlow的支持向量机 66

4.1 支持向量机简介 66

4.2 线性支持向量机的使用 67

4.2.1 开始 67

4.2.2 动手做 68

4.2.3 工作原理 72

4.3 弱化为线性回归 72

4.3.1 开始 73

4.3.2 动手做 73

4.3.3 工作原理 76

4.4 TensorFlow上核函数的使用 77

4.4.1 开始 77

4.4.2 动手做 77

4.4.3 工作原理 81

4.4.4 延伸学习 82

4.5 用TensorFlow实现非线性支持向量机 82

4.5.1 开始 82

4.5.2 动手做 82

4.5.3 工作原理 84

4.6 用TensorFlow实现多类支持向量机 85

4.6.1 开始 85

4.6.2 动手做 86

4.6.3 工作原理 89

第5章 最近邻域法 90

5.1 最近邻域法介绍 90

5.2 最近邻域法的使用 91

5.2.1 开始 91

5.2.2 动手做 91

5.2.3 工作原理 94

5.2.4 延伸学习 94

5.3 如何度量文本距离 95

5.3.1 开始 95

5.3.2 动手做 95

5.3.3 工作原理 98

5.3.4 延伸学习 98

5.4 用TensorFlow实现混合距离计算 98

5.4.1 开始 98

5.4.2 动手做 98

5.4.3 工作原理 101

5.4.4 延伸学习 101

5.5 用TensorFlow实现地址匹配 101

5.5.1 开始 101

5.5.2 动手做 102

5.5.3 工作原理 104

5.6 用TensorFlow实现图像识别 105

5.6.1 开始 105

5.6.2 动手做 105

5.6.3 工作原理 108

5.6.4 延伸学习 108

第6章 神经网络算法 109

6.1 神经网络算法基础 109

6.2 用TensorFlow实现门函数 110

6.2.1 开始 110

6.2.2 动手做 111

6.2.3 工作原理 113

6.3 使用门函数和激励函数 113

6.3.1 开始 114

6.3.2 动手做 114

6.3.3 工作原理 116

6.3.4 延伸学习 117

6.4 用TensorFlow实现单层神经网络 117

6.4.1 开始 117

6.4.2 动手做 117

6.4.3 工作原理 119

6.4.4 延伸学习 119

6.5 用TensorFlow实现神经网络常见层 120

6.5.1 开始 120

6.5.2 动手做 121

6.5.3 工作原理 126

6.6 用TensorFlow实现多层神经网络 126

6.6.1 开始 126

6.6.2 动手做 126

6.6.3 工作原理 131

6.7 线性预测模型的优化 131

6.7.1 开始 131

6.7.2 动手做 131

6.7.3 工作原理 135

6.8 用TensorFlow基于神经网络实现井字棋 136

6.8.1 开始 136

6.8.2 动手做 137

6.8.3 工作原理 142

第7章 自然语言处理 143

7.1 文本处理介绍 143

7.2 词袋的使用 144

7.2.1 开始 144

7.2.2 动手做 144

7.2.3 工作原理 149

7.2.4 延伸学习 149

7.3 用TensorFlow实现TF-IDF算法 149

7.3.1 开始 150

7.3.2 动手做 150

7.3.3 工作原理 154

7.3.4 延伸学习 154

7.4 用TensorFlow实现skip-gram模型 155

7.4.1 开始 155

7.4.2 动手做 155

7.4.3 工作原理 162

7.4.4 延伸学习 162

7.5 用TensorFlow实现CBOW词嵌入模型 162

7.5.1 开始 162

7.5.2 动手做 163

7.5.3 工作原理 167

7.5.4 延伸学习 167

7.6 使用TensorFlow的Word2 Vec预测 167

7.6.1 开始 167

7.6.2 动手做 168

7.6.3 工作原理 172

7.6.4 延伸学习 172

7.7 用TensorFlow实现基于Doc2Vec的情感分析 172

7.7.1 开始 172

7.7.2 动手做 173

7.7.3 工作原理 180

第8章 卷积神经网络 181

8.1 卷积神经网络介绍 181

8.2 用TensorFlow实现简单的CNN 182

8.2.1 开始 182

8.2.2 动手做 182

8.2.3 工作原理 187

8.2.4 延伸学习 188

8.2.5 参考 188

8.3 用TensorFlow实现进阶的CNN 188

8.3.1 开始 188

8.3.2 动手做 189

8.3.3 工作原理 196

8.3.4 参考 196

8.4 再训练已有的CNN模型 196

8.4.1 开始 196

8.4.2 动手做 196

8.4.3 工作原理 199

8.4.4 参考 199

8.5 用TensorFlow实现模仿大师绘画 199

8.5.1 开始 200

8.5.2 动手做 200

8.5.3 工作原理 205

8.5.4 参考 205

8.6 用TensorFlow实现DeepDream 205

8.6.1 开始 205

8.6.2 动手做 205

8.6.3 延伸学习 210

8.6.4 参考 210

第9章 递归神经网络 211

9.1 递归神经网络介绍 211

9.2 用TensorFlow实现RNN模型进行垃圾短信预测 212

9.2.1 开始 212

9.2.2 动手做 213

9.2.3 工作原理 217

9.2.4 延伸学习 218

9.3 用TensorFlow实现LSTM模型 218

9.3.1 开始 218

9.3.2 动手做 219

9.3.3 工作原理 226

9.3.4 延伸学习 226

9.4 Stacking多个LSTM Layer 226

9.4.1 开始 226

9.4.2 动手做 227

9.4.3 工作原理 228

9.5 用TensorFlow实现Seq2Seq翻译模型 229

9.5.1 开始 229

9.5.2 动手做 229

9.5.3 工作原理 234

9.5.4 延伸学习 234

9.6 TensorFlow实现孪生RNN预测相似度 235

9.6.1 开始 235

9.6.2 动手做 236

9.6.3 延伸学习 242

第10章 TensorFlow产品化 243

10.1 简介 243

10.2 TensorFlow的单元测试 243

10.2.1 开始 243

10.2.2 工作原理 247

10.3 TensorFlow的并发执行 247

10.3.1 开始 248

10.3.2 动手做 248

10.3.3 工作原理 250

10.3.4 延伸学习 250

10.4 分布式TensorFlow实践 250

10.4.1 开始 250

10.4.2 动手做 250

10.4.3 工作原理 251

10.5 TensorFlow产品化开发提示 252

10.5.1 开始 252

10.5.2 动手做 252

10.5.3 工作原理 254

10.6 TensorFlow产品化的实例 254

10.6.1 开始 254

10.6.2 动手做 254

10.6.3 工作原理 256

第11章 TensorFlow的进阶应用 257

11.1 简介 257

11.2 TensorFlow可视化:Tensorboard 257

11.2.1 开始 257

11.2.2 动手做 258

11.3 Tensorboard的进阶 260

11.4 用TensorFlow实现遗传算法 262

11.4.1 开始 262

11.4.2 动手做 263

11.4.3 工作原理 265

11.4.4 延伸学习 266

11.5 TensorFlow实现k-means算法 266

11.5.1 开始 266

11.5.2 动手做 266

11.5.3 延伸学习 270

11.6 用TensorFlow求解常微分方程问题 270

11.6.1 开始 270

11.6.2 动手做 270

11.6.3 工作原理 271

11.6.4 参考 272

返回顶部