TensorFlow深度学习PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:(意)吉安卡洛·扎克尼(Giancarlo Zaccone),(孟加拉)穆罕默德·礼萨·卡里姆
- 出 版 社:北京:人民邮电出版社
- 出版年份:2018
- ISBN:9787115478771
- 页数:227 页
第1章 深度学习入门 1
1.1 机器学习简介 1
1.1.1 监督学习 2
1.1.2 无监督学习 2
1.1.3 强化学习 3
1.2 深度学习定义 3
1.2.1 人脑的工作机制 3
1.2.2 深度学习历史 4
1.2.3 应用领域 5
1.3 神经网络 5
1.3.1 生物神经元 5
1.3.2 人工神经元 6
1.4 人工神经网络的学习方式 8
1.4.1 反向传播算法 8
1.4.2 权重优化 8
1.4.3 随机梯度下降法 9
1.5 神经网络架构 10
1.5.1 多层感知器 10
1.5.2 DNN架构 11
1.5.3 卷积神经网络 12
1.5.4 受限玻尔兹曼机 12
1.6 自编码器 13
1.7 循环神经网络 14
1.8 几种深度学习框架对比 14
1.9 小结 16
第2章 TensorFlow初探 17
2.1 总览 17
2.1.1 TensorFlow l.x版本特性 18
2.1.2 使用上的改进 18
2.1.3 TensorFlow安装与入门 19
2.2 在Linux上安装TensorFlow 19
2.3 为TensorFlow启用NVIDIA GPU 20
2.3.1 第1步:安装NVIDIA CUDA 20
2.3.2 第2步:安装NVIDIA cuDNN v5.1 + 21
2.3.3 第3步:确定GPU卡的CUDA计算能力为3.0+ 22
2.3.4 第4步:安装libcupti-dev库 22
2.3.5 第5步:安装Python(或Python 3) 22
2.3.6 第6步:安装并升级PIP(或PIP3) 22
2.3.7 第7步:安装TensorFlow 23
2.4 如何安装TensorFlow 23
2.4.1 直接使用pip安装 23
2.4.2 使用virtualenv安装 24
2.4.3 从源代码安装 26
2.5 在Windows上安装TensorFlow 27
2.5.1 在虚拟机上安装TensorFlow 27
2.5.2 直接安装到Windows 27
2.6 测试安装是否成功 28
2.7 计算图 28
2.8 为何采用计算图 29
2.9 编程模型 30
2.10 数据模型 33
2.10.1 阶 33
2.10.2 形状 33
2.10.3 数据类型 34
2.10.4 变量 36
2.10.5 取回 37
2.10.6 注入 38
2.11 TensorBoard 38
2.12 实现一个单输入神经元 39
2.13 单输入神经元源代码 43
2.14 迁移到TensorFlow l.x版本 43
2.14.1 如何用脚本升级 44
2.14.2 局限 47
2.14.3 手动升级代码 47
2.14.4 变量 47
2.14.5 汇总函数 47
2.14.6 简化的数学操作 48
2.14.7 其他事项 49
2.15 小结 49
第3章 用TensorFlow构建前馈神经网络 51
3.1 前馈神经网络介绍 51
3.1.1 前馈和反向传播 52
3.1.2 权重和偏差 53
3.1.3 传递函数 53
3.2 手写数字分类 54
3.3 探究MNIST数据集 55
3.4 softmax分类器 57
3.5 TensorFlow模型的保存和还原 63
3.5.1 保存模型 63
3.5.2 还原模型 63
3.5.3 softmax源代码 65
3.5.4 softmax启动器源代码 66
3.6 实现一个五层神经网络 67
3.6.1 可视化 69
3.6.2 五层神经网络源代码 70
3.7 ReLU分类器 72
3.8 可视化 73
3.9 dropout优化 76
3.10 可视化 78
3.11 小结 80
第4章 TensorFlow与卷积神经网络 82
4.1 CNN简介 82
4.2 CNN架构 84
4.3 构建你的第一个CNN 86
4.4 CNN表情识别 95
4.4.1 表情分类器源代码 104
4.4.2 使用自己的图像测试模型 107
4.4.3 源代码 109
4.5 小结 111
第5章 优化TensorFlow自编码器 112
5.1 自编码器简介 112
5.2 实现一个自编码器 113
5.3 增强自编码器的鲁棒性 119
5.4 构建去噪自编码器 120
5.5 卷积自编码器 127
5.5.1 编码器 127
5.5.2 解码器 128
5.5.3 卷积自编码器源代码 134
5.6 小结 138
第6章 循环神经网络 139
6.1 RNN的基本概念 139
6.2 RNN的工作机制 140
6.3 RNN的展开 140
6.4 梯度消失问题 141
6.5 LSTM网络 142
6.6 RNN图像分类器 143
6.7 双向RNN 149
6.8 文本预测 155
6.8.1 数据集 156
6.8.2 困惑度 156
6.8.3 PTB模型 156
6.8.4 运行例程 157
6.9 小结 158
第7章 GPU计算 160
7.1 GPGPU计算 160
7.2 GPGPU的历史 161
7.3 CUDA架构 161
7.4 GPU编程模型 162
7.5 TensorFlow中GPU的设置 163
7.6 TensorFlow的GPU管理 165
7.7 GPU内存管理 168
7.8 在多GPU系统上分配单个GPU 168
7.9 使用多个GPU 170
7.10 小结 171
第8章 TensorFlow高级编程 172
8.1 Keras简介 172
8.2 构建深度学习模型 174
8.3 影评的情感分类 175
8.4 添加一个卷积层 179
8.5 Pretty Tensor 181
8.6 数字分类器 182
8.7 TFLearn 187
8.8 泰坦尼克号幸存者预测器 188
8.9 小结 191
第9章 TensorFlow高级多媒体编程 193
9.1 多媒体分析简介 193
9.2 基于深度学习的大型对象检测 193
9.2.1 瓶颈层 195
9.2.2 使用重训练的模型 195
9.3 加速线性代数 197
9.3.1 TensorFlow的核心优势 197
9.3.2 加速线性代数的准时编译 197
9.4 TensorFlow和Keras 202
9.4.1 Keras简介 202
9.4.2 拥有Keras的好处 203
9.4.3 视频问答系统 203
9.5 Android上的深度学习 209
9.5.1 TensorFlow演示程序 209
9.5.2 Android入门 211
9.6 小结 214
第10章 强化学习 215
10.1 强化学习基本概念 216
10.2 Q-learning算法 217
10.3 OpenAI Gym框架简介 218
10.4 FrozenLake-v0实现问题 220
10.5 使用TensorFlow实现Q-learning 223
10.6 小结 227
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《深度学习与飞桨PaddlePaddle Fluid实战》于祥 2019
- 《深度说服》(英国)尼克·鲍多克 2019
- 《全国普通高等中医药院校药学类专业“十三五”规划教材 第二轮规划教材 有机化学学习指导 第2版》赵骏 2018
- 《深度拆解20个经典品牌民宿》严风林著 2019
- 《基于核心素养的有效学习与学业评价策略 初中政治》李亚莉主编 2018
- 《人体寄生虫学学习指导与习题集 供基础 临床 预防 口腔医学类专业用 第2版》诸欣平,苏川 2018
- 《大学信息技术基础学习与实验指导教程》安世虎主编 2019
- 《牛津中国心理学手册 上 认知与学习》(美)迈克尔·哈里斯·邦德主编;赵俊华,张春妹译 2019
- 《基于核心素养的有效学习与学业评价策略 初中英语》高婉妮主编 2018
- 《弗里达·卡罗》(加)苏珊娜·巴贝扎特著;朱一凡,玩静雯,李梦幻译 2020
- 《星图 通往天空的旅程》(意)埃琳娜·帕西瓦迪 2019
- 《鲍勃·迪伦》(意)马克·波利佐提著洪兵译 2020
- 《艺术中的经典文学形象与故事》(意)弗兰切斯卡·佩莱格里诺,(意)费代里科·皮波莱蒂 2019
- 《给演员的简单手册》(意)达里奥·福,(意)弗兰卡·拉梅(Franca Rame)著 2019
- 《大话西方艺术史》意公子著 2020
- 《量子系统的非平衡多体理论》(意)G.斯蒂芬尼茨,(德)R.冯·莱文 2019
- 《CCNA网络安全运营SECFND 210-250认证考试指南》(美)奥马尔·桑托斯(OmarSantos),约瑟夫·穆尼斯(JosephMuniz),(意) 2019
- 《牙髓病学 生物学与临床视角》(意)多米尼科·里库奇,(巴西)小约瑟·斯奎拉编;陈刚,殷欣,苏阳责编;刘贺,汪林译 2020
- 《午餐时间聊数学》(意)毛里奇奥·科多尼奥著 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《人民院士》吴娜著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《中国人民的心》杨朔著;夕琳编 2019
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019
- 《中华人民共和国成立70周年优秀文学作品精选 短篇小说卷 上 全2册》贺邵俊主编 2019
- 《指向核心素养 北京十一学校名师教学设计 数学 九年级 上 配人教版》周志英总主编 2019
- 《中华人民共和国成立70周年优秀文学作品精选 中篇小说卷 下 全3册》洪治纲主编 2019