当前位置:首页 > 工业技术
智能材料在结构健康监测控制及生物力学中的应用  英文版
智能材料在结构健康监测控制及生物力学中的应用  英文版

智能材料在结构健康监测控制及生物力学中的应用 英文版PDF电子书下载

工业技术

  • 电子书积分:18 积分如何计算积分?
  • 作 者:苏志强,杨耀文;苏瑞喜巴拉编
  • 出 版 社:杭州:浙江大学出版社
  • 出版年份:2012
  • ISBN:9787308082662
  • 页数:618 页
图书介绍:本书介绍了智能材料及其在结构健康监测,振动控制和生物力学领域的最新研究进展。着重阐述了包括压电材料,光纤和离子聚合物金属复合材料(IPMC)等智能材料的理论分析,数值模拟和实验研究。为了适应不同读者的需求,本书不仅涵盖了智能材料的基本概念和建模方法,而且探讨了它们在土木,机械和航空工程的应用方法,包括系统设计,信号处理和损伤识别。本书既可用作研究生教材,也可作为国防和学术机构研究人员的参考书。
《智能材料在结构健康监测控制及生物力学中的应用 英文版》目录

1 Introduction 1

1.1 Overview 1

1.2 Concept of Smart Systems/Structures for SHM 5

1.3 Smart Materials 6

1.4 Piezoelectricity and Piezoelectric Materials 7

References 14

2 Electro-Mechanical Impedance Technique 17

2.1 Introduction 17

2.2 Mechanical Impedance of Structures 18

2.3 Impedance Modeling for EMI Technique 21

2.4 Mechanical Impedance of PZT Patches 27

2.5 PZT-Structure Interaction 29

2.6 Practical Aspects of EMI Technique 35

2.7 Signal Processing Techniques and Conventional Damage Quantification 39

2.8 Major Technological Developments During the Last One and a Half Decades 41

2.9 Advantages of EMI Technique 46

2.10 Limitations of EMI Technique 47

References 47

Exercise 2.1 50

3 Impedance Models for Structural Health Monitoring Using Piezo-Impedance Transducers 53

3.1 Introduction 53

3.2 Early PZT-Structure Interaction Models 53

3.3 2D Effective Mechanical Impedance 56

3.4 2D Formulation Based on Effective Impedance 58

3.5 Experimental Verification 62

3.5.1 Details of Experimental Set-up 62

3.5.2 Determination of Structural EDP Impedance by FEM 63

3.5.3 Modeling of Structural Damping 67

3.5.4 Wavelength Analysis and Convergence Test 67

3.5.5 Comparison between Theoretical and Experimental Signatures 69

3.6 Refining the 2D Impedance Model 70

3.7 3D Interaction of PZT Transducer with Host Structure 77

3.7.1 Necessity of3D Formulation 77

3.7.2 Issues in ID and 2D Impedance Models 77

3.7.3 Issues to Consider in 3D Impedance Model 78

3.8 3D Model in Presence of Thick Adhesive Bonding 81

3.8.1 Impedance Formulation 81

3.8.2 Stress-Strain Relationship of PZT Patch Subjected to 3D Loading 85

3.8.3 3D Differential Equations 86

3.8.4 Solution to 3D Differential Equations 87

3.8.5 Active Part of Solution 89

3.8.6 Stress-Strain Relationships in Presence of Electric Fields 90

3.8.7 Formulation of Structural Responses and Impedances 91

3.8.8 EM Admittance Formulation for M-Functioning PZT Patches 96

3.8.9 Modifications of Linear Impedance Formulations for Case Studies 98

3.8.10 Results and Discussions 104

3.9 FE Modeling of EMI Technique Using Coupled Field Element 106

3.9.1 Review on FE Modeling of PZT-Structure Interaction 106

3.9.2 Inclusion of Induced Strain Actuator in FE Model 108

3.9.3 Comparison of FE Model with Existing Impedance-Based Analytical Model and Experimental Tests 109

3.9.4 FE Modeling of PZT-Structure Interaction 115

References 124

Exercise 3.1 126

Exercise 3.2 127

Exercise 3.3 128

4 Damage Quantification Using EMI Technique 129

4.1 Extraction of Structural Mechanical Impedance from Admittance Signatures 129

4.2 System Parameter Identification from Extracted Impedance Spectra 132

4.3 Damage Diagnosis in Aerospace and Mechanical Systems 137

4.4 Extension to Damage Diagnosis in Civil-Structural Systems 144

4.5 Identification of Higher Modal Frequencies from Conductance Signatures 146

4.6 Numerical Example 150

4.7 Experimental Verifieation 155

4.7.1 Damage Location Identification 158

4.7.2 Effect of Number of Sensitive Modes 159

4.7.3 Effect of Frequency Range 161

4.8 Advantages of Modal Approach 163

4.9 Limitations and Concerns of Modal Approach 163

4.10 Damage Identification Using EMI and Evolutionary Programming 164

4.11 EMI of PZT Transducers 165

4.12 Mechanical Impedance of Damaged Structure 167

4.13 Damage Identification Method 173

4.13.1 EP Algorithm 173

4.13.2 Fitness Function 174

4.14 Experimental Set-up 175

4.15 Experimental Results and Numerical Predictions 177

4.15.1 Damage Identification Results 181

4.15.2 Summary 184

References 184

Exercise 4.1 186

Exercise 4.2 186

5 Strength and Damage Assessment of Concrete 187

5.1 Introduction 187

5.2 Conventional NDE Techniques for Concrete 187

5.3 Concrete Strength Evaluation Using EMI Technique 190

5.4 Extraction of Damage-Sensitive Concrete Parameters from Admittance Signatures 194

5.5 Monitoring Concrete Curing Using Extracted Impedance Parameters 198

5.6 Establishment of Impedance-Based Damage Model for Concrete 201

5.6.1 Definition of Damage Variable 201

5.6.2 Damage Variable Based on the Theory of Fuzzy Sets 204

5.6.3 Fuzzy Probabilistic Damage Calibration of Piezo-Impedance Transducers 207

5.7 Embedded PZT Patches and Issues Involved 210

5.8 Experimental Set-up 211

5.8.1 Methods to Fabricate Embeddable PZT 211

5.8.2 Fabrication of Robust Embeddable PZT Patch 213

5.9 Efficiency of Embedded PZT 216

5.9.1 Comparison Test 216

5.9.2 Monitoring Test 217

5.10 Damage Analysis Using Statistical Method 218

References 220

6 Integration of EMI Technique with Global Vibration Techniques 223

6.1 Introduction 223

6.2 Piezoelectric Materials as Dynamic Strain Sensors 224

6.3 Determination of Strain Mode Shapes Using Surface-Bonded PZT Patches 226

6.4 Identification and Localization of Incipient Damage 230

6.5 Localization of Moderate and Severe Damages Using Global Vibration Techniques 234

6.5.1 For 1D Structures(Beams) 234

6.5.2 For 2D Structures(Plates) 236

6.6 Severity of Damage 239

References 243

7 Sensing Region,Load Monitoring and Practical Issues 245

7.1 Sensing Region of PZT Patches 245

7.1.1 Introduction 245

7.1.2 Theoretical Modeling 246

7.1.3 Experimental Verification 258

7.1.4 Results and Discussions 259

7.1.5 Summary 264

7.2 PZT Patches for Load Monitoring 265

7.2.1 Introduction 265

7.2.2 Effect of Stress in Structure 265

7.2.3 Influence of Applied Load on EM Admittance Signatures 266

7.2.4 Experimental Investigations and Discussions 267

7.2.5 Efficiency of EM Admittance Signatures Using Statistical Index 271

7.2.6 Summary 275

7.3 Practical Issues Related to Application of EMI Technique in SHM 275

7.3.1 Introduction 275

7.3.2 Consistency of Admittance Signatures Acquired from PZT Patch 276

7.3.3 Effects of Bonding Layer and Temperature 282

7.3.4 Differentiating Temperature-Induced and Damage-Induced Signature Deviations 291

7.3.5 Differentiating Damage in Host Structure and in PZT Patch 293

7.3.6 Summary 294

References 295

8 Smart Beams:A Semi-Analytical Method 299

8.1 Introduction 299

8.2 Analysis of a Column Coupled with Distributed Piezoelectric Actuator 302

8.2.1 Motion Equations 303

8.2.2 Analytical Solutions for Displacement Feedback Control 306

8.2.3 Semi-Analytical Solutions for Velocity Feedback Control 312

8.2.4 Effects of Feedback Strategies on Motion Equations 317

8.3 Numerical simulations 318

8.3.1 Numerical Results for Displacement Feedback Control 319

8.3.2 Numerical Results for Velocity Feedback Control 325

8.4 Conclusions and Recommendations 329

8.4.1 Conclusions 329

8.4.2 Recommendations 329

References 330

9 Smart Plates and Shells 333

9.1 Optimal Vibration Control using Genetic Algorithms 333

9.1.1 Introduction 333

9.1.2 Sensing and Actuating Equations 335

9.1.3 Energy-Based Approach for Integrated Optimal Design 343

9.1.4 General Formulation and Modified Real-Encoded GA 345

9.1.5 Numerical Examples 348

9.2 Optimal Excitation of Piezoelectric Plates and Shells 362

9.2.1 Introduction 362

9.2.2 Piezoelectric Actuated Plates 363

9.2.3 Piezoelectric Actuated Cylindrical Shell 370

9.2.4 Optimal Placement of PZT Actuator on Plate 374

9.2.5 Optimal Placement of PZT Actuator on Shell 387

9.2.6 Discussions 389

9.2.7 Summary 391

References 392

10 Cylindrical Shells with Piezoelectric Shear Actuators 395

10.1 Introduction 395

10.2 Governing Equations 397

10.3 Non-Damping Vibration of Simply Supported Shell 399

10.4 Active Vibration Control of Cylindrical Shell with PSAs 401

10.5 Numerical Results and Discussions 402

10.5.1 Steady-State Response Analysis 403

10.5.2 Active Vibration Control 407

10.6 Summary 410

References 410

11 Fiber Bragg Grating 413

11.1 Introduction 413

11.2 History of FBG 414

11.3 Fabrication of FBG 415

11.4 Optical Properties of Grating 417

11.5 Thermal Properties of FBG 420

11.6 Mechanical Properties of FBG 421

11.7 Maximun Reflectivity of Bragg Grating 422

11.8 Full Width at Half Maximum 423

11.9 FBG Sensors 424

11.9.1 Direct Sensing Using FBG 424

11.9.2 Indirect Sensing by Embedded FBG 425

11.10 FBG-Based Pressure/Strain Sensor 427

11.11 FBG-Based Shear Force Sensor 428

References 435

12 Applications of Fiber Bragg Grating Sensors 441

12.1 Introduction 441

12.2 Pressure Monitoring at Foot Sole of Diabetic Patients 441

12.3 Pressure and Temperature Monitoring in a Dental Splint 445

12.3.1 Structure of FBG-Based Splint Sensor 446

12.3.2 Experimental Results and Discussions 447

12.4 Monitoring Civil Structures 449

12.4.1 Sensing Approach 449

12.4.2 Symmetrically Bonded FBG Sensor Arrays on Rebars 449

12.4.3 Contact Force Measurement at Beam-Column Joint 458

12.5 Multi-Component Force Measurement 460

12.5.1 Basic Concept 461

12.5.2 Two-Component Force Measurement 462

12.5.3 2D Force Measurement 466

12.5.4 3D Force Measurement 467

12.6 Simultaneous Measurement of Pressure and Temperature 472

12.6.1 Sensor Configuration and Working Principle 472

12.6.2 Sensor Fabrication and Experimental Procedure 475

12.7 Summary 477

References 478

13 Monitoring of Rocks and Underground Structures Using PZT and FBG Sensors 481

13.1 Introduction 481

13.2 Conventional Versus Smart Material Based Sensor Systems for LHR and SHM of Underground Structures 482

13.3 Experimental Investigations on Rocks 483

13.4 LHR by ESG and FBG Sensors 485

13.4.1 Specimen 1 485

13.4.2 Specimen 2 487

13.5 SHM by PZT Transducers 489

13.5.1 Specimen 1 489

13.5.2 Specimen 2 491

13.5.3 Specimen 3 492

13.5.4 Extraction of Structural Mechanical Impedance 493

13.5.5 Calibration of Extracted Parameters for Damage Quantification 494

13.6 Robustness of PZT Transducers and FBG-Based Strain Gauges 497

13.7 Potential Applications of Smart Sensors on Rock Structures 497

References 499

14 Ionic Polymer-Metal Composite and its Actuation Characteristics 501

14.1 Introduction 501

14.1.1 History and Characterizations 501

14.1.2 Experimental Study and Physical Modeling 503

14.1.3 Implemented and Potential Applications 507

14.2 Bending Moment Capacity of IPMC 507

14.2.1 Charge Redistribution 507

14.2.2 Bending Moment 512

14.3 Validation and Discussions 520

14.4 Frequency Dependent Characteristics 525

14.5 Summary 529

References 530

15 IPMC-Based Biomedical Applications 533

15.1 Introduction 533

15.2 IPMC Beam on Human Tissues 534

15.2.1 Modeling of IPMC Beam on Human Tissues 534

15.2.2 Illustrative Examples and Discussions 536

15.3 IPMC Ring with Elastic Medium 543

15.3.1 Problem Formulation 543

15.3.2 Displacement Solutions 546

15.3.3 Illustrative Examples 548

15.4 IPMC Shell with Flowing Fluid 554

15.4.1 Problem Formulation 554

15.4.2 Wave Propagation Solutions 559

15.4.3 Illustrative Example and Discussion 563

15.5 Summary 565

References 567

16 Bone Characterization Using Piezo-Transducers as Bio-Medical Sensors 569

16.1 Introduction 569

16.2 Monitoring Changes in Bone Density 572

16.3 Monitoring Healing Process in Bones 575

16.4 FE Simulation of EMI Technique on Bones 577

References 580

17 Future of Smart Materials 583

17.1 Past and Future Developments of IPMC 583

17.2 PZT/MFC in Energy Harvesting 585

17.2.1 Current Research in Energy Harvesting using Piezoelectric Materials 585

17.2.2 Main Concerns for Future Practical Applications 587

17.3 Futuristic Applications of Smart Materials 591

References 592

Appendix 595

Index 613

相关图书
作者其它书籍
返回顶部