智能视感学 英文版PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:张秀彬,曼苏乐著
- 出 版 社:北京:中国水利水电出版社
- 出版年份:2012
- ISBN:9787517000907
- 页数:304 页
Base article 1
Chapter1 Introduction 1
1.1 Overview 1
1.1.1 Concept about the Visual Perception 1
1.1.2 The Development of Visual Perception Technology 2
1.1.3 Classification of Visual Perception System 4
1.2 A Visual Perception Hardware-base 6
1.2.1 Image Sensing 6
1.2.2 Image Acquisition 22
1.2.3 PC Hardware Requirements for VPS 27
Exercises 31
Chapter2 Foundations of Image Processing 32
2.1 Basic Processing Methods for Gray Image 32
2.1.1 Spatial Domain Enhancement Algorithm 32
2.1.2 Frequency Domain Enhancement Algorithm 43
2.2 Edge Detection of Gray Image 50
2.2.1 Threshold Edge Detection 51
2.2.2 Gradient-based Edge Detection 53
2.2.3 Laplacian Operator 56
2.2.4 Canny Edge Operator 58
2.2.5 Mathematical Morphological Method 63
2.2.6 Brief Description of Other Algorithms 66
2.3 Binarization Processing and Segmentation of Image 67
2.3.1 General Description 67
2.3.2 Histogram-based Valley-point Threshold Image Binarization 68
2.3.3 OTSU Algorithm 68
2.3.4 Minimum Error Method of Image Segmentation 70
2.4 Color Image Enhancement 71
2.4.1 Color Space and Its Transformation 71
2.4.2 Histogram Equalization of Color Levels in Color Image 74
2.5 Color Image Edge Detection 76
2.5.1 Color Image Edge Detection Based on Gradient Extreme Value 76
2.5.2 Practical Method for Color Image Edge Detection 79
Exercises 80
Chapter3 Mathematical Model of the Camera 83
3.1 Geometric Transformations of Image Space 83
3.1.1 Homogeneous Coordinates 84
3.1.2 Orthogonal Transformation and Rigid Body Transformation 84
3.1.3 Similarity Transformation and Affine Transformation 85
3.1.4 Perspective Transformation 86
3.2 Image Coordinate System and Its Transformation 88
3.2.1 Image Coordinate System 88
3.2.2 Image Coordinate Transformation 90
3.3 Common Method of Calibration Camera Parameters 94
3.3.1 Step Calibration Method 95
3.3.2 Calibration Algorithm Based on More than One Free Plane 97
3.3.3 Non-linear Distortion Parameter Calibration Method 99
Exercises 101
Chapter4 Visual Perception Identification Algorithms 104
4.1 Image Feature Extraction and Identification Algorithm 105
4.1.1 Decision Theory Approach 105
4.1.2 Statistical Classification Method 112
4.1.3 Feature Classification Discretion Similarity about the Image Recognition Process 114
4.2 Principal Component Analysis 116
4.2.1 Principal Component Analysis Principle 116
4.2.2 Kernel Principal Component Analysis 118
4.2.3 PCA-based Image Recognition 122
4.3 Support Vector Machines 125
4.3.1 Main Contents of Statistical Learning Theory 126
4.3.2 Classification-Support Vector Machine 130
4.3.3 Solution to the Nonlinear Regression Problem 136
4.3.4 Algorithm of Support Vector Machine 139
4.3.5 Image Characteristics Identification Based on SVM 145
4.4 Moment Invariants and Normalized Moments of Inertia 146
4.4.1 Moment Theory 147
4.4.2 Normalized Moment of Inertia 149
4.5 Template Matching and Similarity 157
4.5.1 Spatial Domain Description of Template Matching 157
4.5.2 Frequency Domain Description of Template Matching 162
4.6 Object Recognition Based on Color Feature 171
4.6.1 Image Colorimetric Processing 171
4.6.2 Construction of Color-Pool 173
4.6.3 Object Recognition Based on Color 175
4.7 Image Fuzzy Recognition Method 176
4.7.1 Fuzzy Content Feature and Fuzzy Similarity Degree 176
4.7.2 Extraction of Fuzzy Structure 178
4.7.3 Fuzzy Synthesis Decision-making of Image Matching 183
Exercises 188
Chapter5 Detection Principle of Visual Perception 191
5.1 Single View Geometry and Detection Principle of Monocular Visual Perception 191
5.1.1 Single Vision Coordinate System 191
5.1.2 Basic Algorithm for Single Vision Detection 192
5.1.3 Engineering Technology Based on Single View Geometry 192
5.2 Detection Principle of Binocular Visual Perception 195
5.2.1 Two-view Geometry and Detection of Binocular Perception 196
5.2.2 Epipolar Geometry Principle 200
5.2.3 Determination Method of Spatial Coordinates 204
5.2.4 Camera Calibration in Binocular Visual Perception System 207
5.3 Theoretical Basis for Multiple Visual Perception Detection 217
5.3.1 Tensor Geometry Principle 218
5.3.2 Geometric Properties of Three Visual Tensor 221
5.3.3 Operation of Three-visual Tensor 226
5.3.4 Constraint Matching Feature Points of Three-visual Tensor 228
5.3.5 Three-visual Tensor Restrict the Three Visual Restraint Feature Line’s Matching 231
Exercises 236
Application article 238
Chapter6 Practical Technology of Intelligent Visual Perception 238
6.1 Automatic Monitoring System and Method of Load Limitation of The Bridge 238
6.1.1 The Basic Composition of The System 239
6.1.2 System Algorithm 241
6.2 Intelligent Identification System for Billet Number 244
6.2.1 System Control Program 245
6.2.2 Recognition Algorithm 245
6.3 Verification of Banknotes-Sorting Based on Image Information 251
6.3.1 Preprocessing of the Banknotes Image 252
6.3.2 Distinction Between Old and New Banknotes 252
6.3.3 Distinction of the Denomination and Direction of the Banknotes 253
6.3.4 Banknotes Fineness Detection 255
6.4 Intelligent Collision Avoidance Technology of Vehicle 258
6.4.1 Basic Hardware Configuration 258
6.4.2 Road Obstacle Recognition Algorithm 259
6.4.3 Smart Algorithm of Anti-collision to Pedestrians 262
6.5 Intelligent Visual Perception Control of Traffic Lights 267
6.5.1 Overview 267
6.5.2 The Core Algorithm of Intelligent Visual Perception Control of Traffic Lights 267
Exercises 272
Appendix 275
Ⅰ Least Square and Common Algorithms in Visual Perception Detection 275
Ⅰ.1 Basic Idea of the Algorithm 275
Ⅰ.2 Common Least Square Algorithms in Visual Perception Detection 276
Ⅰ.2.1 Least Square of Linear System of Equations 276
Ⅰ.2.2 Least Square Solution of Nonlinear Homogeneous System of Equations 278
Ⅱ Theory and Method of BAYES Decision 281
Ⅱ.1 Introduction 281
Ⅱ.2 BAYES Classification Decision Mode 281
Ⅱ.2.1 BAYES Classification of Minimum Error Rate 281
Ⅱ.2.2 BAYES Classification Decision of Minimum Risk 283
Ⅲ Statistical Learning and VC-dimension Theorem 285
Ⅲ.1 Bounding Theory and VC-dimension Principle 285
Ⅲ.2 Generalized Capability Bounding 286
Ⅲ.3 Structural Risk Minimization Principle of Induction 287
Ⅳ Optimality Conditions on Constrained Nonlinear Programming Problem 288
Ⅳ.1 Kuhn-Tucker Condition 288
Ⅳ.1.1 Gordon Lemma 288
Ⅳ.1.2 Fritz John Theorem 288
Ⅳ.1.3 Proof of the Kuhn-Tucker Condition 289
Ⅳ.2 Karush-Kuhn-Tucker Condition 291
Subject Index 293
References 300
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《AutoCAD 2018自学视频教程 标准版 中文版》CAD/CAM/CAE技术联盟 2019
- 《跟孩子一起看图学英文》张紫颖著 2019
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019
- 《智能时代的教育智慧》魏忠著 2019
- 《复分析 英文版》(中国)李娜,马立新 2019
- 《张世祥小提琴启蒙教程 中英文双语版》张世祥编著 2017
- 《生物化学 本科临床 英文版》张晓伟 2018
- 《理想国 全英文原版》(古希腊)柏拉图著 2017
- 《牛头山植物》张秀岳,金孝锋,吴棣飞主编 2019
- 《蒙医五疗器械 曹德木加木苏》呼斯乐著 2017
- 《经济报道新思路》张秀平,卢良主编;新闻出版报编 1992
- 《普通高等教育“十三五”规划教材 简明大学化学实验》刘飞责任编辑;(中国)王凤彬,芦昌盛 2019
- 《百大先进武器》梁瑞彬编著 2014
- 《高等职业教育“十三五”规划教材 工业机器人拆装与调试 工业机器人技术专业》胡月霞,卢玉锋,王志彬主编;周彦云,付志勇,郭微副主编 2019
- 《医用解剖学 第2版》姚志彬主编;汪华侨,初国良副主编 2019
- 《社会研究方法》刘志彬责编;邱泽奇译者;(美)艾尔·巴比 2020
- 《香山设县850年》吴冉彬主编;中山市地方志办公室等编 2003
- 《玄门宝典》董沛文主编;周全彬,盛克琦点校 2017
- 《中国当代乡土小说文库 本乡本土》(中国)刘玉堂 2019
- 《异质性条件下技术创新最优市场结构研究 以中国高技术产业为例》千慧雄 2019
- 《中国铁路人 第三届现实主义网络文学征文大赛一等奖》恒传录著 2019
- 《莼江曲谱 2 中国昆曲博物馆藏稀见昆剧手抄曲谱汇编之一》郭腊梅主编;孙伊婷副主编;孙文明,孙伊婷编委;中国昆曲博物馆编 2018
- 《中国制造业绿色供应链发展研究报告》中国电子信息产业发展研究院 2019
- 《中央财政支持提升专业服务产业发展能力项目水利工程专业课程建设成果 设施农业工程技术》赵英编 2018
- 《中国陈设艺术史》赵囡囡著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《《走近科学》精选丛书 中国UFO悬案调查》郭之文 2019
- 《清至民国中国西北戏剧经典唱段汇辑 第8卷》孔令纪 2018