当前位置:首页 > 数理化
实变函数
实变函数

实变函数PDF电子书下载

数理化

  • 电子书积分:8 积分如何计算积分?
  • 作 者:黄仿伦编著
  • 出 版 社:合肥:安徽大学出版社
  • 出版年份:2001
  • ISBN:7810524453
  • 页数:121 页
图书介绍:安徽大学“211工程”资助出版教材:本书内容为Lebesgue测度,可测函数及Lebesgue积分理论,一般集合上的测度与积分基础。
《实变函数》目录
标签:编著 函数

第一章 集合 1

1.1 集合及其运算 1

1.2 映射与势 3

1.3 一维开集、闭集及其性质 7

1.4 开集的构造 10

1.5 距离 12

习题 14

第二章 Lebesgue测度 16

2.1 有界开集、闭集的测度及其性质 16

2.2 可测集及其性质 19

2.3 R上无界点集的测度 24

习题二 26

第三章 Lebesgue可测函数 28

3.1 Lebesgue可测函数及其基本性质 28

3.2 可测函数列的收敛性 33

3.3 可测函数的构造 38

习题三 41

第四章 Lebesgue积分 43

4.1 Lebesgue积分的引入 43

4.2 积分的性质 45

4.3 积分序列的极限 51

4.4 Riemann积分与Lebesgue积分的比较 56

4.5 二重L-积分与Fubini定理 60

习题四 62

第五章 微分与不定积分 65

5.1 单调函数的可微性 65

5.2 有界变差函数与绝对连续函数 69

习题五 77

6.1 Lp(p≥1)空间的概念 79

第六章 Lp(p≥1)空间 79

6.2 Lp空间的收敛性 82

6.3 L2(E)空间 87

习题六 89

第七章 一般集合的测度 91

7.1 环上的测度 91

7.2 σ环上外测度、可测集、测度的扩张 95

7.3 广义测度 100

7.4 乘积测度与Fubini定理 104

7.5 勒贝格—斯蒂杰积分概念 113

习题七 119

相关图书
作者其它书籍
返回顶部