当前位置:首页 > 数理化
丢番图逼近引论
丢番图逼近引论

丢番图逼近引论PDF电子书下载

数理化

  • 电子书积分:13 积分如何计算积分?
  • 作 者:朱尧辰,王连祥著
  • 出 版 社:北京:科学出版社
  • 出版年份:1993
  • ISBN:703003161X
  • 页数:382 页
图书介绍:本书论述了丢番图逼近的基本理论和方法,主要内容包括:实数的有理逼近的各种问题、代数数有理通近的Schmidt定理、度量理论、一致分布、p-adic结果及数的几何基本定理.本书内容重点突出,论证计算详尽,是数学系髙年级学生、研究生的一本入门书,本书也可供数论及数论应用方面的研究人员参考
《丢番图逼近引论》目录
标签:引论 逼近

第一章 用有理数逼近实数 1

1.1 抽屉原理与 Dirichlet 定理 1

1.2 和内插、Farey 序列与 Hurwitz 定理 4

1.3 连分数与 Borel 定理 11

1.4 周期连分数与 Legendre 定理 21

1.5 最佳逼近与不可很好逼近 30

1.6 条件有理逼近 32

1.7 逼近阶与逼近常数 35

习题 44

2.1 联立逼近的 Dirichlet 定理 45

第二章 实数的联立有理逼近 45

2.2 Minkowski 第一凸体定理与线性型定理 48

2.3 联立逼近常数的改进 53

2.4 反结果 58

附录 实数在有理数域 Q 上线性无关性 61

习题 62

第三章 非齐次逼近 64

3.1 一维非齐次逼近的 Minkowski 定理 64

3.2 反结果 73

3.3 联立非齐次逼近的 Kronecker 定理 76

3.4 Kronecker 定理的一些推论 87

3.5 实系数线性型的乘积 88

附录 模的概念和性质 93

习题 97

第四章 转换定理 99

4.1 Mahler 转换定理 99

4.2 线性型的转置系 102

4.3 Хинчин转换原理 105

4.4 实数联立逼近的转换定理 107

4.5 线性型的逆转置系 114

4.6 齐次与非齐次逼近问题间的转换定理 121

4.7 Birch 定理 127

习题 132

第五章 代数数的有理逼近 135

5.1 历史概述 135

5.2 Roth-Schmidt 指标 138

5.3 组合引理 143

5.4 多项式引理 146

5.5 第一指标定理 149

5.6 第二指标定理 159

5.7 Roth 引理 165

5.8 第三指标定理(Roth 引理的推广) 174

5.9 Minkowski 第二凸体定理 178

5.10 Davenport 引理 189

5.11 线性型的复合 192

5.12 S 正规系 199

5.13 关于最后两个极小定理 202

5.14 关于第一个极小定理 212

5.15 Roth 定理的证明 221

5.16 Schmidt 定理的证明 223

附录 本章各节关系图 225

习题 226

第六章 用代数数逼近实数 227

6.1 用已知数域的元素逼近实数 227

6.2 用有界次数的代数数逼近实数 230

6.3 Davenport-Schmidt 定理的证明 232

6.4 Wirsing 定理的证明 239

6.5 代数数逼近的 Roth 型结果 243

附录 代数数的高与 Mahler 度量 245

习题 253

第七章 度量定理 254

7.1 Хинчин定理 255

7.2 Duffin-Schaeffer 定理 258

7.3 Duffin-Schaeffer 定理的证明 262

7.4 Duffin-Schaeffer 猜想 274

7.5 联立逼近的度量定理 278

7.6 非齐次逼近的度量定理 282

7.7 解数的渐近表达式 287

习题 299

第八章 序列的一致分布 301

8.1 一维一致分布(mod ?)序列 301

8.2 Weyl 判别法则 306

8.3 van der Corput 定理 311

8.4 多维一致分布(mod 1)序列 316

8.5 线性型的一致分布(mod 1) 318

8.6 偏差估计 320

8.7 正规数 323

习题 328

9.1 代数方程的 p-adic 解 331

第九章 p-adic 丢番图逼近 331

9.2 p-adic 赋值与 p-adic 数域 335

9.3 Hensel 引理与 p-adic 数域 Q?的二次扩张 344

9.4 用有理数逼近 p-adic 数 349

9.5 p-adic 连分数 354

9.6 用有理数逼近 p-adic 代数数 360

9.7 几个著名丢番图逼近定理的 p-adic 类似 368

附录 代数数的绝对高与代数数域上的赋值 370

习题 372

各章关系图 375

参考文献 376

返回顶部