当前位置:首页 > 数理化
Bifurcation Theory of Limit Cycles  极限环分支理论
Bifurcation Theory of Limit Cycles  极限环分支理论

Bifurcation Theory of Limit Cycles 极限环分支理论PDF电子书下载

数理化

  • 电子书积分:12 积分如何计算积分?
  • 作 者:Han Maoan
  • 出 版 社:北京:科学出版社发行部
  • 出版年份:2013
  • ISBN:9787030361400
  • 页数:348 页
图书介绍:本书是专门论述二维系统的极限环分支。本书的创新点是深入研究了Melnikov函数的展开式,获得了若干展开式系数的计算公式,并应用到一系列多项式系统,获得极限环个数的新结果。本书内容前沿,自成一体。虽是专著,但又可以作为研究生教学用书,更可以作为同行科研用书。
《Bifurcation Theory of Limit Cycles 极限环分支理论》目录

Chapter 1 Limit Cycle and Its Perturbations 1

1.1 Basic notations and facts 1

1.2 Further discussion on property of limit cycles 7

1.3 Perturbations of a limit cycle 13

Chapter 2 Focus Values and Hopf Bifurcation 20

2.1 Poincarémap and focus value 20

2.2 Normal form and Poincaré-Lyapunov technique 28

2.3 Hopf bifurcation near a focus and systems with symmetry 44

2.4 Degenerate Hopf bifurcation near a center 58

2.5 Hopf bifurcation for Liénard systems 72

2.6 Hopf bifurcation for some polynomial systems 92

Chapter 3 Perturbations of Hamiltonian Systems 106

3.1 General theory 106

3.2 Limit cycles near homoclinic and heteroclinic loops 124

3.3 Finding more limit cycles by Melnikov functions 163

3.4 Limit cycle bifurcations near a nilpotent center 183

3.5 Limit cycle bifurcations with a nilpotent cusp 200

3.6 Limit cycle bifurcations with a nilpotent saddle 214

Chapter 4 Stability of Homoclinic Loops and Limit Cycle Bifurcations 254

4.1 Local behavior near a saddle 254

4.2 Stability of a homoclinic loop and bifurcation near it 269

4.3 Homoclinic and heteroclinic bifurcations in near-Hamiltonian systems 290

Chapter 5 The Number of Limit Cycles of Polynomial Systems 310

5.1 Introduction 310

5.2 Some fundamental results 312

5.3 Further study for general polynomial systems 322

Bibliography 333

Index 347

相关图书
作者其它书籍
返回顶部